International Journal of Communication Networks and Information

Security

2026, 18(1)

ISSN: 2073-607X,2076-0930

https://https://ijenis.org/ Research Article

Emerging AIoT Technologies for Efficient Data Collection
and Decision Making in Smart Farming

Omkar Singh**, Vinoth R?, Abhilasha Singh?, Navanendra Singh!

1 Assistant Professor, National Institute of Fashion Technology, Patna, India

*Corresponding Author: omkar.singh@nift.ac.in

ARTICLE INFO ABSTRACT

Received: 03-12-2025 Traditional farming is being transformed into intelligent, data-driven agriculture by the confluence of

Accepted: 23-12-2025 Artlﬁmal In?elhgence (AI) and j[hf; Internet of Things (IoT)' into the AIoT paradlgm. In order to
increase agricultural output, optimize resource use, lessen environmental effects, and improve farmer
decision-making, smart farming uses real-time data from distributed sensors, automated systems, and
predictive models. The growing use of AIoT technology in agriculture addresses global issues such as
resource limitations, population expansion, labor problems, and climate change. Wireless sensor
networks (WSNs), drones and autonomous vehicles, edge computing, cloud analytics, and machine
learning algorithms for predictive insights are key elements of AIoT systems in agriculture. In order
to initiate automatic activities or offer decision assistance, these systems gather diverse data, including
soil moisture, weather, crop health indicators, and equipment status. These data are then processed
and analyzed. In order to improve data collection and decision-making in smart farming, this article
examines new AIoT technologies. We look at the integration of various technologies, their advantages,
real-world applications, issues with connectivity, security, data quality, and farmer adoption, as well
as potential avenues for future research. This study uses an interdisciplinary approach to identify
trends, gaps in existing practice, and tactics to optimize AIoT's influence in sustainable agriculture.
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1. INTRODUCTION

Rapid advancements in digital technologies and the increasing demand for sustainable food production are
driving a fundamental shift in agriculture [1]. Climate variability, water scarcity, soil degradation, rising input costs,
and labor shortages are just a few of the issues that traditional agricultural methods, which mostly rely on manual
observation, experience, and reactive decision making, are finding it more and more difficult to handle. At the same
time, population growth and shifting consumption habits are driving up the world's food demand [2]. The use of
smart farming techniques, which leverage data and technology to increase production, resilience, and efficiency,
has risen as a result of these challenges. A major technological enabler among these strategies is the combination
of Artificial Intelligence (AI) with the Internet of Things (IoT), or AIoT [3].

IoT technologies enable large-scale, continuous data collection from agricultural surroundings, laying the
groundwork for smart farming. Real-time data on soil moisture, temperature, humidity, nutrient levels, crop
development, and animal health are collected by dispersed sensors positioned throughout fields, greenhouses, and
livestock facilities [4]. While automated equipment and actuators capture operational data about irrigation,
fertilization, and harvesting, drones and satellite imagery provide spatial and temporal perspectives. Often referred
to as "agricultural big data," this sensor-rich environment produces enormous amounts of diverse data. However,
unless it can be processed, analyzed, and converted into timely actions, raw data on its own has little value [5].
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In order to transform agricultural data into information that can be put to use, artificial intelligence is essential.
Based on past and present data, machine learning and deep learning algorithms can spot trends, forecast results,
and suggest the best course of action. Artificial intelligence (AI) models are employed in smart farming settings to
forecast yield, identify pests and diseases, schedule irrigation, optimize fertilizer, and guide agricultural machines
autonomously. Al allows for automated and adaptive decision-making when paired with IoT technology,
transforming farming operations from reactive to proactive and predictive. The AIoT paradigm is defined by this
convergence of automation, intelligence, and sensing [6].

The importance of AloT in agriculture is further enhanced by developments in communication and computer
technology. Edge computing reduces latency and reliance on constant internet access by enabling data processing
and Al inference to take place closer to the data source [3]. This is especially crucial in isolated and rural farming
areas where network infrastructure might not be dependable. Simultaneously, cloud platforms offer scalable
computing and storage resources for combining multi-season datasets, training intricate AT models, and providing
decision support systems that may be accessed via web and mobile applications. Flexible architectures that strike a
compromise between long-term analytics and real-time responsiveness are made possible by the combination of
edge and cloud computing [7].

A key prerequisite for successful AloT-based smart farming is efficient data collection. Weather, soil conditions,
biological activities, and human activity all have an impact on agricultural ecosystems, which are quite dynamic [3].
Decisions that are not ideal or even detrimental can result from incomplete, inaccurate, or delayed data. Advanced
sensors with improved durability and accuracy, low-power wide-area networks that facilitate long-range
communication, and data fusion techniques that combine information from several sources are some of the
emerging AloT technologies that tackle this problem. These skills enhance situational awareness in farm
management at both the macro and micro levels [8].

Agricultural decision-making is intrinsically complicated, involving trade-offs between risk, production, cost,
and environmental impact. Farmers frequently have to make unclear decisions about when and how much to
fertilize, water, or use crop protection measures. By evaluating data-driven insights and making recommendations
unique to particular field circumstances, AloT-based decision support systems help farmers [7]. AloT systems can
directly control actuators in more sophisticated implementations, allowing for robotic field activities, controlled
watering, and greenhouse climate management. Particularly in large-scale or labor-constrained farming operations,
such automation guarantees prompt interventions and lessens human effort [9].

AToT implementation in agriculture confronts a number of obstacles despite its potential. These include the
requirement for technical skills among farmers and farm managers, data security and privacy concerns,
interoperability problems among diverse equipment, and expensive initial investment prices. Furthermore, a lot of
AT models operate as "black boxes," which might reduce acceptance and confidence when recommendations are
difficult to understand. Continued research, user-centered system design, supportive legislation, and capacity-
building programs are needed to address these issues [10].

1.1 Scope

This study focuses on new AIoT technologies that make it possible for smart farming systems to collect data
effectively and make wise decisions. Crop cultivation, precision irrigation, pest and disease control, soil and water
monitoring, and some parts of animal monitoring when AIoT is used are all included in the scope [8]. It looks at
data analytics, communication networks, sensing technologies, and Al-based decision support systems. System
architectures, real-world applications, advantages, and drawbacks are highlighted in the paper. Only when they are
directly related to on-farm AIoT deployment are post-harvest processing, supply chain management, and market-
level analytics taken into account [11].

1.2 Objectives

This paper explores emerging AloT technologies that improve data collection and decision-making in smart
farming. Specific objectives include:

e Reviewing key AIoT components relevant to agriculture.

e Exploring how AI algorithms utilize IoT-collected data for predictive insights.
e Analyzing architectures that support real-time data processing.

e Identifying real-world applications, benefits, and limitations.

e Suggesting future research directions to address current gaps.
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2. RELATED WORK

Over the past 20 years, a lot of research has been done on the use of digital technology in agriculture; early
studies concentrated on sensor-based monitoring systems and precision agriculture. The utilization of wireless
sensor networks to gather environmental data, including temperature, humidity, and soil moisture, was the main
focus of early research [9]. When compared to traditional calendar-based methods, these investigations showed
that continuous sensing might greatly enhance irrigation scheduling and resource usage. Nevertheless, the majority
of early systems were limited in their capacity to adjust to changing field conditions since they depended on rule-
based decision mechanisms and static thresholds [12].

Several researchers looked at large-scale IoT-enabled agricultural monitoring platforms due to the Internet of
Things' explosive growth. These studies focused on long-range connectivity using technologies like Zigbee,
LoRaWAN, and NB-IoT, low-power sensor design, and energy-efficient communication protocols [6]. Field
deployments demonstrated that IoT devices could function for long stretches of time with no upkeep, making them
appropriate for big, isolated agricultural fields. However, these platforms provided limited analytical capabilities
for sophisticated decision making, primarily concentrating on data collection and visualization [13].

A major change in related research occurred when machine learning was introduced into agricultural
applications. To forecast agricultural productivity, categorize soil types, and identify plant diseases, researchers
started utilizing supervised learning methods, including support vector machines, decision trees, and random
forests [8]. With the advent of inexpensive cameras and drones, image-based methods gained popularity since they
allowed computer vision algorithms to automatically identify pests and nutrient deficits. Although these models
outperformed conventional techniques in terms of accuracy, several of them lacked integration with real-time IoT
data streams and were trained on offline datasets [14].

The confluence of AI and IoT into integrated AIoT frameworks for smart farming has been highlighted more
and more in recent studies. In order to facilitate real-time analytics and long-term decision support, these studies
suggest layered architectures that analyze sensor data via edge and cloud computing infrastructures [12]. By
carrying out initial data filtering and inference close to the data source, edge computing has been emphasized as a
way to lower latency and bandwidth consumption. According to experimental data, time-sensitive tasks like
automated irrigation control and anomaly detection in greenhouse conditions can be successfully supported by
edge-based AI models [15].

Deep learning methods for agricultural decision making are the subject of another substantial corpus of related
work. Using multispectral and hyperspectral imaging, convolutional neural networks have been extensively used
for crop disease detection, weed categorization, and crop growth monitoring. High classification accuracy has been
reported by researchers, especially when deep learning models are trained on sizable and varied datasets [13].
Weather forecasting and yield estimation have made use of time-series models, such as recurrent neural networks
and long short-term memory networks. Even though these models perform better, their deployment in resource-
constrained farming situations may be limited since they frequently demand significant computational resources
and huge labeled datasets [16].

Decision support systems that integrate AI models with agronomic information have been the subject of
numerous studies. To increase robustness and interpretability, these hybrid techniques combine data-driven
forecasts with expert guidelines. For instance, machine learning predictions based on sensor data have been
integrated with evapotranspiration models in irrigation recommendation systems. Because the guidelines are in
line with well-known agronomic concepts, these systems have demonstrated increased adoption among farmers.
Scalability and customisation across many crops and geographical areas, however, continue to be unresolved issues
[17].

AloT-based research has also helped livestock farming, especially in the areas of behavior analysis and health
monitoring. Anomalies in animal locomotion, feeding habits, and vital signs have been identified using wearable
sensors and computer vision systems. Early disease and stress condition diagnosis is made possible by machine
learning models built on these data streams. Although encouraging, many studies are restricted to small herds and
controlled settings, underscoring the need for validation in diverse and large-scale farming situations [18].

Numerous related works have addressed security, privacy, and data management challenges. Unauthorized
access, data manipulation, and denial-of-service attacks are among the vulnerabilities that researchers have found
in IoT-based agricultural systems. Secure data storage methods, authentication systems, and lightweight encryption
schemes are some of the suggested remedies. In order to guarantee data integrity and traceability, some research
has recommended incorporating blockchain technologies. These methods add extra computational and energy
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overheads, even while they improve trust [19].

Table 1: Summarizing key aspects

(G L Key Technologies Main Contributions Limitations
Used Identified
Sensor-based Wireless sensor | Enabled real-time | Relied on  static
Precision Agriculture | networks, basic IoT | monitoring of soil and | thresholds; limited
[20] nodes environmental parameters; | adaptability and
improved irrigation | intelligence
scheduling
IoT-enabled IoT sensors, LPWAN | Large-scale data collection | Mostly focused on
Monitoring Platforms | (LoRaWAN, NB-IoT), | with low power consumption; | data acquisition and
[21] cloud dashboards long-term field deployment visualization;  weak
decision-making
capabilities
Machine Learning in | SVM, Random Forest, | Improved yield prediction, | Often offline models,
Agriculture [22] Decision Trees soil classification, and | limited integration
disease detection accuracy with real-time IoT
data
Deep Learning for | CNNs, RNNs, | High accuracy in disease | High computational
Crop Analysis [23] multispectral imaging, | detection, weed | cost; need for large
drones identification, and crop | labeled datasets
monitoring
Edge Computing- | Edge AI, fog computing, | Reduced latency; enabled | Limited processing
based Smart Farming | sensor gateways real-time control such as | power at the edge;
[24] automated irrigation model complexity
constraints
Hybrid Decision | Al models + agronomic | Improved  interpretability | Scalability and
Support Systems [25] | rules and farmer acceptance of | regional
recommendations customization
challenges
AIoT in Livestock | Wearable sensors, | Early detection of health | Mostly validated in
Monitoring [26] computer vision, ML | issues and behavior | small-scale or
models anomalies controlled
environments
Security-focused Encryption, Enhanced data integrity, | Added computational
Agricultural IoT [27] authentication, privacy, and trust and energy overhead;
blockchain complexity
Integrated AIoT | IoT + AI + edge—cloud | End-to-end data collection | Lack of holistic, cost-
Frameworks [28] architectures and intelligent decision | effective, and farmer-
making centric solutions

3. AToT ARCHITECTURE FOR SMART FARMING

A well-designed AloT architecture that can provide dependable data gathering, effective processing, intelligent
analytics, and practical decision making is crucial to the success of smart farming systems. Because agricultural
ecosystems are geographically dispersed and extremely dynamic, they need architectures that are resilient, scalable,
energy-efficient, and able to function in situations with limited connectivity. To control complexity and guarantee
a smooth connection between sensing devices, communication networks, computing resources, and end-user
applications, a layered AToT design is frequently used [29].

Copyright © 2026 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution License which permits
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Fig. 1: AIoT Architecture for Smart Farming

3.1 Perception Layer: Data Acquisition and Actuation

By facilitating real-time data collection from the actual farming environment, the perception layer serves as the
cornerstone of the AIoT architecture. It is made up of several sensing and actuation devices that are placed across
aquaculture systems, greenhouses, fields, and animal shelters [30].

Important variables like temperature, pH, salinity, moisture content, and nutrient levels are measured via soil
sensors. Rainfall, humidity, wind speed, and sun radiation are among the atmospheric variables that weather
sensors record. Crop health, growth stages, and stress conditions are evaluated using optical sensors, cameras, and
multispectral or hyperspectral imagers. Wearable sensors and vision-based systems are used in cattle husbandry to
track animal movement, feeding habits, and physiological markers [31].

Actuators are equally significant parts of this layer. These include robotic tools for weeding or spraying, climate
control systems, fertilizer dispensers, and irrigation valves. Actuators carry out physical tasks on the farm after
receiving control signals produced by AI-driven decision modules. Because perception-layer devices are deployed
outdoors and operate for extended periods of time, reliability, low power consumption, and environmental
robustness are critical design requirements [32].

3.2 Communication Layer: Data Transmission and Connectivity

The communication layer is in charge of sending control commands back to actuators and conveying data from
sensing devices to processing units. Connectivity is a major difficulty in smart agricultural systems since they
frequently span broad and rural locations [33].

Because of its extended communication range, low energy consumption, and compatibility with tiny data
packets, low-power wide-area network technologies like LoRaWAN and NB-IoT are frequently deployed. Wi-Fi,
cellular networks, private LTE, and 5G networks are used for high-bandwidth applications such as picture and video
transmission from drones or cameras. Gateways compile information from several sensor nodes and provide it to
cloud platforms or edge servers [34].

This layer needs to guarantee secure communication, fault tolerance, and dependable data transmission. In
dynamic agricultural contexts, adaptive routing, data compression, and scheduling techniques are frequently
employed to maximize bandwidth utilization and minimize packet loss [35].

3.3 Edge Computing Layer: Local Processing and Real-Time Intelligence

By facilitating local processing and analysis, the edge computing layer brings intelligence closer to the data
source. Data filtering, aggregation, anomaly detection, and real-time Al inference are among the functions carried
out by edge devices, such as smart gateways or embedded controllers [36].

The edge layer lessens reliance on constant cloud connectivity and lowers latency by processing data locally.
For time-sensitive processes like automated irrigation control, greenhouse climate regulation, and safety-related
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choices, this is especially crucial. In order to address memory, processing, and energy constraints, lightweight
machine learning models or compressed deep learning networks are frequently implemented at the edge [37].

By reducing the quantity of raw data sent to the cloud, edge computing also improves data privacy. By
forwarding only pertinent features, summaries, or alerts, communication overhead and exposure to possible
security risks are decreased [38].

3.4 Cloud Computing Layer: Centralized Analytics and Model Training

High-performance processing, scalable storage, and sophisticated analytics are all offered by the cloud
computing layer. It acts as the focal point for combining data gathered over extended periods of time, from various
sources, and over several fields or farms [39].

This layer uses both historical and current data to train sophisticated AI models. The cloud is usually used for
tasks like yield forecasts, long-term climate effect assessments, and seasonal resource allocation optimization.
Additionally, cloud platforms facilitate data fusion, which combines sensor data with other datasets, including
market data, weather forecasts, and satellite imagery [40].

Through recurring retraining and validation, the cloud layer allows AI models to be continuously improved. A
closed-loop learning system that adjusts to shifting operational and environmental variables can be created by
deploying updated models back to edge devices [41].

3.5 Data Management and Integration Layer

The success of AloT-based smart farming depends on efficient data handling. Data ingestion, storage,
preprocessing, labeling, and retrieval are all handled by this layer. Robust data cleaning and normalization
procedures are necessary because agricultural data are frequently heterogeneous, noisy, and incomplete [42].

Semantic data models, time synchronization, and metadata management all contribute to interoperability and
consistency across many platforms and devices. In order to facilitate more precise and context-aware decision
making, data integration frameworks allow sensor data to be combined with agronomic knowledge, historical
records, and other information sources [43].

3.6 AI and Decision Support Layer

Converting processed data into useful insights is the responsibility of the Al and decision support layer. It
houses algorithms for machine learning, deep learning, and optimization that examine trends, forecast results, and
produce suggestions [44].

Irrigation schedules, fertilizer application rates, pest control alerts, and equipment maintenance
recommendations are examples of decision outputs. By directly activating actuators, this layer also facilitates
autonomous decision execution in sophisticated systems. For farmers to successfully implement AI-generated
recommendations, explainability and transparency are crucial factors [45].

3.7 Application Layer: User Interaction and Visualization

Farmers, agronomists, and farm managers can communicate with the AIoT system via interfaces provided by
the application layer. Real-time sensor data, analytical results, alerts, and recommendations are presented in an
intuitive way using web dashboards and mobile applications [46].

Maps, charts, and trend analysis are examples of visualization tools that aid users in comprehending temporal
and spatial differences in farm conditions. Strategic planning and well-informed decision-making are supported by
customizable warnings and reporting tools. To guarantee usability across all technical skill levels, user-centric
design is essential [47].

3.8 Security and Management Layer

All levels of the AIoT architecture are covered by security and system management functionalities. This covers
system monitoring, access control, secure data transmission, and device authentication. The smart farming
infrastructure's long-term dependability and robustness are guaranteed by frequent upgrades, fault detection, and
remote device management [48].

Sensing, communication, intelligence, and action may all be seamlessly coordinated with a well-integrated core
AIoT architecture. These designs serve as the foundation for next-generation smart farming systems that are
productive, sustainable, and able to adapt to new challenges by facilitating effective data collection and intelligent
decision making [49].

Copyright © 2026 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution License which permits
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4. EMERGING TECHNOLOGIES FOR DATA COLLECTION

The foundation of AloT-enabled smart farming is effective and trustworthy data collection. Due to the complexity,
spatial dispersion, and high degree of dynamic nature of agricultural environments, data collection solutions must be
precise, reliable, scalable, and energy-efficient. The quality, granularity, and timeliness of agricultural data have been
greatly improved by recent developments in sensing, imaging, robotics, and connectivity. Important new technologies
that facilitate sophisticated data collection in smart agricultural systems are covered in this section [50].

[ o W\
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€2 =

&

WEATHER SMART
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Fig. 2: Smart Farming AIoT Infographic

4.1 Smart Soil and Environmental Sensors

Data-driven agriculture relies heavily on environmental and soil sensors. Numerous factors, including soil
moisture, temperature, electrical conductivity, pH, salinity, and nutrient concentrations, can be measured
simultaneously by contemporary smart sensors. Microcontrollers that carry out local preprocessing, calibration,
and fault detection are frequently integrated into these sensors [51].

Sensor accuracy and durability under challenging field circumstances have improved thanks to developments
in material science and sensor manufacture. When paired with solar or energy-harvesting devices, energy-efficient
designs enable long-term deployment with low maintenance. Precise irrigation and fertilization decisions are made
possible by real-time soil data, which minimizes water waste and nutrient runoff while preserving ideal crop
development conditions [52].

4.2 Weather Monitoring Stations and Microclimate Sensing

Crop growth, insect dynamics, and irrigation needs are all directly impacted by weather conditions. Compact
and inexpensive, emerging AloT-based weather stations can record localized microclimate data, such as rainfall,
humidity, wind speed, sun radiation, and air pressure [53].

Distributed microclimate sensors offer fine-grained spatial data that represents fluctuations within a single
farm, in contrast to conventional centralized weather stations. AT models for illness prediction, yield forecasting,
and evapotranspiration calculation are more accurate thanks to this localized data. Predictive performance is
further improved by integration with external meteorological data [54].

4.3 Remote Sensing and Satellite-Based Data Collection

For extensive agricultural surveillance, satellite remote sensing has emerged as a crucial data source. Higher
spatial, temporal, and spectral resolution made possible by satellite imaging advancements allows for frequent
monitoring of agricultural conditions across large regions [55].

Crop vigor, biomass, and stress levels are frequently evaluated using vegetation indices like NDVI and EVI
that are generated from satellite data. AToT platforms combine sensor readings from the ground with satellite
data to offer multi-scale insights. Although cloud cover and revisit intervals may have an impact on satellite data,
its extensive coverage makes it useful for strategic planning and regional monitoring [56].

4.4 Unmanned Aerial Vehicles for High-Resolution Sensing
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Drones, also referred to as unmanned aerial vehicles, offer versatile and high-resolution data collection
capabilities. Drones with RGB, multispectral, hyperspectral, and thermal cameras may take precise pictures of crops
at crucial growth stages [57].

Early diagnosis of crop diseases, water stress, nutritional deficits, and insect infestations is made possible by
drone-based sensing. Aerial imagery is processed by Al algorithms to create field maps that identify trouble spots
and allow for focused actions. Drones are appropriate for precision agricultural applications because they provide
superior spatial resolution and on-demand data collection when compared to satellite imaging [58].

4.5 Autonomous Ground Robots and Field Rovers

In smart farming, autonomous field rovers and ground robots are becoming mobile platforms for data
collection. These devices collect in-situ and close-range data using cameras, LiDAR, soil probes, and environmental
sensors [59].

In situations where aerial platforms have restricted visibility, ground robots can function beneath crop
canopies. They simultaneously carry out duties like scouting, weeding, or sampling while gathering comprehensive
data on plant morphology, weed density, and soil conditions. Real-time monitoring and adaptive decision making
are supported by ground robots' constant data collection [60].

4.6 Computer Vision and Imaging Sensors

In order to collect visual data for crop and livestock monitoring, computer vision technologies are essential.
Images and videos reflecting plant health, growth stages, and animal activity are gathered by mobile cameras on
drones and robots, as well as fixed cameras in greenhouses and barns [61].

Diseases, weeds, and pests can now be automatically identified thanks to developments in image sensors and
Al-based vision algorithms. By detecting temperature changes linked to illness or a lack of water, thermal imaging
sensors help detect stress. In addition to numerical sensor measurements, these visual data sources offer rich
contextual information [62].

4.7 Wearable and Biometric Sensors for Livestock

Wearable sensors have become a dependable method of ongoing data collection in animal production. These
devices are affixed to animals and track many data, including feeding behavior, activity levels, heart rate, and body
temperature [63].

The information gathered aids in identifying early indicators of disease, stress, or reproductive cycles.
Automated alarms and health evaluations are made possible by integration with AT models, which enhances animal
production and welfare. Additionally, wearable sensors provide position tracking, which helps prevent theft and
manage pastures [64].

4.8 Aquaculture and Water Quality Sensors

Water quality factors like dissolved oxygen, pH, temperature, turbidity, and ammonia levels are monitored by
smart aquaculture systems using both surface and underwater sensors. Maintaining healthy aquatic habitats
requires accurate and ongoing monitoring [65].

New sensor technologies provide increased biofouling resistance and sensitivity. Al models are used to assess
the data gathered from these sensors in order to optimize water exchange, aeration, and feeding schedules, hence
lowering operating costs and environmental impact [66].

Table 2: Emerging Technologies for Data Collection in Smart Farming

Technology Data Collected Key Sensors / Tools | Coverage Area Advantages Limitations
Smart Soil | Soil moisture, | Capacitive sensors, EC | Localized Real-time, Limited spatial
Sensors [67] temperature, pH, | sensors, pH probes (field/plot level) high accuracy, | coverage,
nutrients low power | maintenance
consumption required
Weather Stations | Rainfall, humidity, | Rain gauges, | Farm or regional | Supports Installation
[68] temperature, wind | anemometers, level climate-aware | cost,
speed, solar | hygrometers decisions, calibration
radiation continuous needed
monitoring
UAVs (Drones) | Crop health, NDVI, | RGB, multispectral, | Medium to large | High- Weather
[69] canopy cover, pest | thermal cameras farms resolution dependent,
stress imagery, limited battery
flexible life
deployment

Copyright © 2026 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution License which permits
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Satellite Remote | Vegetation indices, | Multispectral and | Large-scale and | Wide coverage, | Lower
Sensing [70] soil moisture, land | hyperspectral sensors | regional historical data | resolution,
use availability data latency
Smart Imaging | Leaf color, growth | Al-enabled cameras Early disease | High data
Systems [71] patterns, pest Plant-level detection, volume,
presence automated processing
analysis overhead
Wearable Body temperature, | RFID, accelerometers, | Individual animals | Improves Device  cost,
Livestock Sensors | movement, and | biosensors animal health | battery
[72] feeding behavior monitoring replacement
IoT-Enabled Equipment GPS, pressure, | Field operations Enhances Integration
Machinery performance, fuel | vibration sensors operational complexity
Sensors [73] use, soil efficiency
compaction
Environmental CO2,NH3, methane | Gas sensors Greenhouses/farms | Supports Sensor  drift,
Gas Sensors [74] | levels climate- calibration
controlled needs
farming

5. Al TECHNIQUES FOR DECISION MAKING

In order to convert unprocessed agricultural data gathered by AloT devices into insightful analysis and practical
choices, artificial intelligence is essential. Uncertainty, non-linearity, and a heavy reliance on biological and
environmental variables define farming ecosystems. By identifying patterns in both historical and current data, Al
methods assist in modeling this complexity and facilitate autonomous, predictive, and prescriptive decision-
making. The main AI methods for making decisions in smart farming are covered in this section, along with their
functions and benefits [75].

5.1 Supervised Machine Learning for Predictive Analytics

When labeled datasets are available, agricultural decision support systems frequently employ supervised
machine learning algorithms. These models discover correlations between input variables, including crop
characteristics, weather, and soil parameters, and output variables, like yield, the presence of disease, or water
requirements [76].

Support vector machines, decision trees, random forests, linear regression, and gradient boosting models are
among the frequently utilized techniques. These methods are used for tasks including disease categorization, soil
fertility assessment, and agricultural yield prediction. Supervised models are prized for their robust performance
on structured data and comparatively easy implementation. However, the quality and representativeness of labeled
training data have a significant impact on their accuracy [77].

5.2 Unsupervised Learning for Pattern Discovery

When labeled data is scarce or unavailable, as is frequently the case in agriculture, unsupervised learning
techniques are used. Without predetermined outputs, these techniques find hidden patterns, similarities, or
anomalies in data [78].

Fields are divided according to crop growth patterns, soil characteristics, or moisture levels using clustering
techniques like DBSCAN, k-means, and hierarchical clustering. Abnormal sensor readings, early indicators of
disease outbreaks, or equipment failures can all be found with the use of anomaly detection tools. Unsupervised
learning facilitates exploratory analysis and aids agronomists and farmers in comprehending field variability [79].

5.3 Deep Learning for Complex Data Analysis

Because deep learning approaches can handle complicated, high-dimensional data like photos, movies, and
time-series sensor streams, they have attracted a lot of attention. Convolutional neural networks are widely utilized
for image-based decision making, such as crop stage categorization using camera or drone imagery, weed
identification, and plant disease detection [80].

Sequential data is used for irrigation planning, yield estimates, and weather forecasting using recurrent neural
networks and long short-term memory models. Transformer-based designs for multi-modal agricultural data have
been investigated more recently. Although deep learning models are very accurate, their deployment in resource-
constrained situations may be limited due to their high computing resources and huge dataset requirements [81].

5.4 Reinforcement Learning for Adaptive Control
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For decision-making tasks involving sequential actions and dynamic contexts, reinforcement learning is
especially well-suited. By interacting with their surroundings and getting feedback in the form of rewards,
reinforcement learning agents in smart farming discover the best tactics [82].

Robotic navigation, greenhouse climate control, and adaptive irrigation scheduling are examples of
applications. An RL-based irrigation system, for instance, balances crop health and water usage to determine when
and how much to irrigate. In order to guarantee stable and secure functioning, reinforcement learning necessitates
lengthy training and careful reward function design [83].

5.5 Edge Al for Real-Time Decisions

Using AI models directly on edge devices, including gateways, microcontrollers, or embedded systems, is
known as "edge AL" By processing data close to the source, this method lowers latency and dependence on cloud
connectivity, enabling real-time decision making [84].

Edge Al is utilized in agriculture for things like automated actuator control, local anomaly detection, and quick
pest detection. To overcome hardware limitations, lightweight models, model compression, and quantization
techniques are frequently used. Particularly in isolated farming regions with poor network connectivity, edge Al
improves responsiveness and resilience [85].

5.6 Hybrid AI Models and Knowledge-Based Systems

Hybrid AI techniques integrate rule-based systems, domain expertise, and data-driven models. To increase
robustness and interpretability, these systems combine machine learning predictions with expert rules, crop growth
models, and agronomic knowledge [86].

For example, machine learning predictions based on sensor data can be combined with evapotranspiration
equations to create irrigation recommendations. By coordinating AI decisions with conventional farming methods,
hybrid systems boost farmer confidence and promote adoption. However, strong cooperation between Al specialists
and agriculture experts is necessary for the development and upkeep of such systems [87].

5.7 Explainable AI for Trustworthy Decision Making

Because farmers must comprehend the reasoning behind recommendations, explainability is a crucial
prerequisite for agricultural decision support. Through the identification of influential elements, the visualization
of decision paths, or the generation of human-readable explanations, explainable Al techniques offer insights into
model behavior [88].

Predictions about yield, disease risk, or resource allocation are interpreted by users with the aid of techniques
like feature importance analysis, saliency mapping, and rule extraction. Explainable AI enhances user confidence,
accountability, and transparency—all of which are critical for the broad adoption of AloT-based systems [89].

5.8 Digital Twins and Simulation-Based Decision Support

By combining sensor data, artificial intelligence models, and simulation tools, digital twin technology generates
virtual replicas of actual farming systems. Before implementing them in the actual world, these virtual settings
enable farmers to assess various situations, such as modifications to planting dates or irrigation tactics [90].

Digital twins powered by Al facilitate long-term planning, risk assessment, and predictive analysis. Digital
twins facilitate more proactive and informed decision-making by modeling crop growth and environmental
interactions [91].

5.9 Continuous Learning and Model Adaptation

Seasonal fluctuations, climatic trends, and management techniques all cause agricultural ecosystems to vary
throughout time. AI models can adapt by changing their parameters in response to fresh input thanks to continuous
learning techniques.

While maintaining data privacy, online learning, transfer learning, and federated learning techniques facilitate
model evolution. Over several growth seasons, decision-making systems are kept correct and pertinent through
constant change [92].

Table 3: AI Techniques for Decision Making in Smart Farming

i In D
Al Technique Decision-Making put Data Types Key Limitations Typical Smart
Role Advantages Farming
Applications
Rule-Based Systems | Threshold-based Sensor readings, expert | Simple, Rigid, not | Basic irrigation
[93] decisions rules transparent, easy | adaptive to | control, alerts
to implement changing
conditions
Machine Learning | Predictive and | Historical sensor data, | High accuracy, | Requires labeled | Yield prediction,
(Supervised) [94] classification decisions weather data data-driven data, retraining | disease
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insights needed classification
Unsupervised Pattern discovery and | Multivariate sensor data No labeled data | Limited Stress detection,
Learning [95] anomaly detection needed, detects | interpretability anomaly
unknown identification
patterns
Deep Learning [96] Complex decision | Images, videos, | High precision in | High Crop disease
inference multispectral data image-based computational detection, weed
analysis cost, low | recognition
explainability
Reinforcement Sequential decision | State-action-reward data Learns optimal | Training Irrigation
Learning [97] optimization policies over time | complexity, scheduling,
exploration risk greenhouse
control
Fuzzy Logic Systems | Decision making under | Imprecise sensor data Handles Rule tuning | Climate control,
[98] uncertainty uncertainty well, | required irrigation
interpretable management
Bayesian Networks | Probabilistic reasoning | Sensor data, prior | Manages Computational Pest outbreak
[99] knowledge uncertainty, complexity prediction, risk
supports assessment
reasoning
Ensemble Learning | Robust decision | Multiple model outputs Improved Higher Crop yield
[3] support accuracy and | computation cost | estimation,
reliability disease diagnosis
Edge AI Models [7] Real-time local | Streaming sensor data Low latency, | Limited model | Automated
decisions reduced complexity irrigation, real-
bandwidth usage time alerts
Hybrid AI Models | Integrated decision | AI models + agronomic | Balanced Design Precision
[11] frameworks rules accuracy and | complexity farming decision
interpretability support

6. BENEFITS AND IMPACTS

The productivity, sustainability, and resilience of agriculture are significantly impacted by the use of ATIoT technology
in smart farming. AloT-based solutions convert conventional farming methods into precision-driven operations by
facilitating ongoing data collection, intelligent analysis, and prompt decision-making. The main advantages and
effects of AIoT in agriculture from an economic, environmental, and social perspective are covered in this section [7].

6.1 Enhanced Resource Efficiency

Increased efficiency in the use of vital resources like water, fertilizer, energy, and agrochemicals is one of the
biggest advantages of AIoT in smart farming. Based on current soil moisture and meteorological circumstances,
sensor-driven irrigation systems only provide water when and where it is required. In a similar vein, AI-guided
precision fertilization eliminates fertilizer waste and lowers runoff into nearby ecosystems [13].

In addition to reducing input costs, optimal resource usage increases the availability of limited resources,
especially in water-stressed areas. Long-term agricultural sustainability and better environmental stewardship are
facilitated by this efficiency [15].

6.2 Increased Crop Yield and Quality

By facilitating the early detection of stress factors, including pests, illnesses, nutrient deficits, and water
limitations, AloT-enabled decision support systems increase crop production. Farmers can reduce production
losses and improve crop health by intervening at the best time through continuous monitoring and predictive
analytics [17].

Furthermore, consistent crop development and higher quality are the results of exact control over growing
circumstances. This leads to lower post-harvest losses and higher market prices for high-value commodities like
fruits and vegetables [19].

6.3 Cost Reduction and Economic Gains

Automation and smart decision-making cut operational inefficiencies and lessen reliance on manual labor. AI-
guided spraying, robotic weeding, and autonomous irrigation all lower labor needs and related expenses.
Additionally, early problem discovery avoids costly large-scale interventions later in the growth cycle [88].

These efficiencies result in increased profitability and a higher return on investment for farmers. Adoption of
AloT on a larger scale boosts rural development and agriculture's economic viability [21].
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6.4 Risk Mitigation and Climate Resilience

Extreme weather events and climatic variability pose a serious threat to agriculture. By offering real-time
monitoring and forecasting insights regarding weather patterns, soil conditions, and crop responses, AloT systems
increase resilience [87].

Al-driven forecasting models provide proactive planning and mitigation methods by assisting farmers in
anticipating risks like disease outbreaks, floods, and droughts. In the face of shifting climatic conditions, this risk-
aware decision-making helps stabilize agricultural output by lowering uncertainty [23].

6.5 Environmental Sustainability

AloT technologies greatly lessen farming's environmental impact by making it possible to apply water,
fertilizer, and pesticides precisely. Reduced use of chemicals reduces biodiversity loss, water pollution, and soil
degradation [28].

AloT-enabled sustainable farming methods enhance soil health, lower greenhouse gas emissions, and promote
resource conservation. Long-term ecological balance and agricultural productivity are matched by these
environmental advantages [85].

6.6 Improved Farm Management and Decision Transparency

AToT technologies give farmers access to extensive dashboards that display historical and real-time data from
various aspects of agricultural operations. Strategic planning, performance evaluation, and well-informed decision
making are all supported by this holistic perspective [30].

Transparent statistics and explainable AI boost confidence in automated suggestions. More adoption and
efficient use of Al-driven technologies result from farmers having a better knowledge of how decisions are made
[831.

6.7 Support for Smallholder and Precision Farming

AToT technologies that are affordable and easy to use can help small and medium-sized farmers by giving them
access to precision agricultural methods that were previously only available to large commercial enterprises [80].

Localized AI models, mobile-based decision support, and inexpensive sensors assist smallholders in increasing
yields and optimizing inputs. This democratization of technology lessens inequalities in agricultural output and
promotes food security [33].

6.8 Social and Labor Impacts

Adoption of AIoT reduces physically taxing and repetitive chores, changing the character of agricultural labor.
Farmers may concentrate on higher-level management tasks thanks to automation, which also enhances working
conditions [35].

Simultaneously, the need for digital skills in agriculture opens up new job, training, and innovation
opportunities in rural areas. Future generations will find the agriculture sector more appealing and modern as a
result of these societal effects [79].

7. CHALLENGES AND LIMITATIONS

Even though AloT-based smart agricultural systems have many advantages, there are a number of
technological, financial, and societal obstacles that limit their widespread use and long-term efficacy. Unlike
conventional industrial or urban IoT contexts, agricultural ecosystems have particular limitations. The main
obstacles and restrictions related to implementing AIoT technology in smart farming are covered in this section
[36].

7.1 Connectivity and Infrastructure Constraints

Reliable network access is still a significant problem, especially in rural and isolated agricultural areas. Real-
time data transfer to cloud platforms is limited in many farms because they lack reliable cellphone service or high-
speed internet. Despite offering long-range connectivity, low-power wide-area networks like LoRaWAN and NB-
IoT may not be appropriate for bandwidth-intensive applications like drone video streaming due to their restricted
data rate support [78].

Reduced system responsiveness, information loss, and data delays can result from infrastructure constraints.
These limitations make it more difficult to implement cloud-dependent AI models and emphasize the necessity of
reliable edge computing solutions [38].
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7.2 Data Quality, Reliability, and Sensor Limitations

The accuracy and dependability of gathered data are critical to Al-driven decision-making. Sensors are
subjected to severe environmental factors in agricultural environments, including dust, wetness, extremely high or
low temperatures, and physical harm. Inaccurate or missing data might result from hardware malfunctions, sensor
drift, and calibration mistakes [40].

7.3 Scalability and System Integration

Heterogeneous equipment from many suppliers, each utilizing distinct data formats and communication
protocols, is frequently used in smart agricultural systems. It is very difficult to integrate sensors, drones, robotics,
edge devices, and cloud platforms seamlessly [77].

Managing thousands of connected devices is harder as farms get bigger or more complicated. System flexibility
and scalability might be hampered by vendor lock-in, interoperability problems, and a lack of defined data models

[75].
7.4 Computational and Energy Constraints

Many AloT components, especially sensor nodes and edge devices, are subject to stringent computational and
energy limitations. Advanced Al models must be simplified, compressed, or offloaded to the cloud to be deployed
on low-power hardware []39.

System lifetime and maintenance needs are also impacted by energy constraints. Although energy harvesting
methods present viable options, they are not yet consistently dependable in all agricultural settings. A crucial
problem is still striking a balance between model accuracy, computational load, and energy usage [41].

7.5 Security and Privacy Risks

Cybersecurity risks, such as illegal access, data manipulation, and denial-of-service attacks, can affect AloT-
based smart farming systems. Compromised systems may cause equipment damage, interfere with farm operations,
or result in poor decision-making [43].

Another issue is data privacy, especially when sensitive farm data is handled or kept in the cloud. Concerns
about data ownership, misuse, or commercial exploitation may make farmers hesitant to provide operational data.
System complexity and operating expenses rise when strong security measures are put in place [74].

7.6 High Initial Investment and Cost Barriers

AIoT technology deployment frequently necessitates a sizable upfront investment in software platforms,
sensors, communication infrastructure, and computational power. These expenses may be unaffordable for small
and medium-sized farmers [71].

Adoption is further constrained by continuing maintenance, data services, and system upgrade costs in
addition to the original outlay. Many farmers could be reluctant to invest in AlIoT solutions in the absence of clear
short-term economic rewards or financial support methods [77].

7.7 Model Generalization and Adaptability

AI models that were trained on data from particular areas, crops, or seasons might not adapt well to other
settings. Model performance can be greatly impacted by variations in crop kinds, agricultural methods, climate, and
soil type [65].

To maintain accuracy, frequent retraining and modification are frequently necessary, which increases
operational complexity. A persistent research challenge is ensuring model adaptability while minimizing retraining
costs [66].

Table 4: Challenges and Limitations of AloT-based Smart Farming Systems

Category [49] Challenge / Deseription Impact on Smart Possible
Limitation Farming Mitigation
Approaches
Infrastructure [53] Limited connectivity Poor internet and cellular | Delayed data | LPWAN, edge
coverage in rural areas transmission  and | computing, hybrid
decision making networks
Data Quality [67] . . Harsh field conditions | Incorrect Al | Sensor redundancy,
Sensor noise and failures | affect sensor accuracy predictions data validation
Scalability [2] Heterogeneous devices Multiple vendors and | Integration and | Standardized
protocols management protocols,
complexity middleware
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Computation [11] o Low processing power and | Restricts advanced | Model
Limited edge resources memory AI deployment compression, edge—
cloud offloading
Energy [89] Power constraints Battery-operated devices | Reduced system
require frequent | reliability Energy
maintenance harvesting, ~low-
power Al models
Security [44] Cyber threats Unauthorized access and | Operational Encryption,
data manipulation disruptions and data | authentication,
loss secure firmware
Privacy [34] Data ownership concerns Fear of misuse of farm data | Low farmer trustand | Clear data
adoption governance policies
Cost [33] L Sensors, drones, Al | Barrier for small- | Subsidies, low-cost
High initial investment platforms are expensive scale farmers AlIoT solutions
AI Models [19] Poor generalization Models trained for specific | Reduced accuracy in | Transfer learning,
regions new environments localized training
Explainability [35] . Lack of transparency in Al | Low user trust Explainable Al
Black-box decisions outputs techniques
Skills [88] Technical skill gap Limited digital literacy | Improper  system | Training and
among farmers usage extension services
Regulatory [99] Policy uncertainty Lack of standards and . Regulatory
regulations Slows adoption frameworks  and
guidelines

8. CONCLUSION

A strong technological basis for the development of smart farming has been introduced by the combination of artificial
intelligence and the Internet of Things. Many of the drawbacks of conventional agricultural methods are addressed by
AloT-based systems, which allow for ongoing data collection, intelligent analysis, and prompt decision-making.
Farmers may monitor field conditions with high precision and take proactive measures to address operational and
environmental concerns by utilizing a variety of Al methodologies, edge and cloud computing, and advanced sensing
technology.

This study demonstrates how new AloT technologies assist sustainable agricultural methods, increase crop output and
quality, lower operating costs, and improve resource efficiency. AIoT systems reduce risks associated with resource
scarcity, pest outbreaks, and climatic unpredictability by enabling data-driven and automated decisions. The analysis
also shows that the implementation of AloT has wider effects, strengthening food security, enhancing agricultural
management, and conserving the environment.

Notwithstanding these benefits, there are still a number of obstacles to overcome, such as infrastructure constraints,
problems with data quality, security difficulties, high upfront expenses, and the requirement for explainable and
flexible AI models. Continued research, standardization, and cooperation between technologists, agricultural
specialists, legislators, and farmers are necessary to address these issues. To guarantee widespread adoption,
especially among small and medium-sized farmers, an emphasis on user-centric design, cost, and capacity building is
crucial.

All things considered, AIoT is a revolutionary approach to contemporary agriculture. AloT-enabled smart farming can
be crucial in creating resilient, effective, and sustainable agricultural systems that can fulfill future global food
demands with further innovation and supportive frameworks.
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