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Traditional farming is being transformed into intelligent, data-driven agriculture by the confluence of 
Artificial Intelligence (AI) and the Internet of Things (IoT) into the AIoT paradigm. In order to 
increase agricultural output, optimize resource use, lessen environmental effects, and improve farmer 
decision-making, smart farming uses real-time data from distributed sensors, automated systems, and 
predictive models. The growing use of AIoT technology in agriculture addresses global issues such as 
resource limitations, population expansion, labor problems, and climate change. Wireless sensor 
networks (WSNs), drones and autonomous vehicles, edge computing, cloud analytics, and machine 
learning algorithms for predictive insights are key elements of AIoT systems in agriculture. In order 
to initiate automatic activities or offer decision assistance, these systems gather diverse data, including 
soil moisture, weather, crop health indicators, and equipment status. These data are then processed 
and analyzed. In order to improve data collection and decision-making in smart farming, this article 
examines new AIoT technologies. We look at the integration of various technologies, their advantages, 
real-world applications, issues with connectivity, security, data quality, and farmer adoption, as well 
as potential avenues for future research. This study uses an interdisciplinary approach to identify 
trends, gaps in existing practice, and tactics to optimize AIoT's influence in sustainable agriculture. 
. 

 
Keywords: AIoT, Precision agriculture, Edge computing, Sensor networks, Decision support systems 
 

 

 
1. INTRODUCTION 

 

Rapid advancements in digital technologies and the increasing demand for sustainable food production are 

driving a fundamental shift in agriculture [1]. Climate variability, water scarcity, soil degradation, rising input costs, 

and labor shortages are just a few of the issues that traditional agricultural methods, which mostly rely on manual 

observation, experience, and reactive decision making, are finding it more and more difficult to handle. At the same 

time, population growth and shifting consumption habits are driving up the world's food demand [2]. The use of 

smart farming techniques, which leverage data and technology to increase production, resilience, and efficiency, 

has risen as a result of these challenges. A major technological enabler among these strategies is the combination 

of Artificial Intelligence (AI) with the Internet of Things (IoT), or AIoT [3]. 

IoT technologies enable large-scale, continuous data collection from agricultural surroundings, laying the 

groundwork for smart farming. Real-time data on soil moisture, temperature, humidity, nutrient levels, crop 

development, and animal health are collected by dispersed sensors positioned throughout fields, greenhouses, and 

livestock facilities [4]. While automated equipment and actuators capture operational data about irrigation, 

fertilization, and harvesting, drones and satellite imagery provide spatial and temporal perspectives. Often referred 

to as "agricultural big data," this sensor-rich environment produces enormous amounts of diverse data. However, 

unless it can be processed, analyzed, and converted into timely actions, raw data on its own has little value [5]. 
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In order to transform agricultural data into information that can be put to use, artificial intelligence is essential. 

Based on past and present data, machine learning and deep learning algorithms can spot trends, forecast results, 

and suggest the best course of action. Artificial intelligence (AI) models are employed in smart farming settings to 

forecast yield, identify pests and diseases, schedule irrigation, optimize fertilizer, and guide agricultural machines 

autonomously. AI allows for automated and adaptive decision-making when paired with IoT technology, 

transforming farming operations from reactive to proactive and predictive. The AIoT paradigm is defined by this 

convergence of automation, intelligence, and sensing [6]. 

The importance of AIoT in agriculture is further enhanced by developments in communication and computer 

technology. Edge computing reduces latency and reliance on constant internet access by enabling data processing 

and AI inference to take place closer to the data source [3]. This is especially crucial in isolated and rural farming 

areas where network infrastructure might not be dependable. Simultaneously, cloud platforms offer scalable 

computing and storage resources for combining multi-season datasets, training intricate AI models, and providing 

decision support systems that may be accessed via web and mobile applications. Flexible architectures that strike a 

compromise between long-term analytics and real-time responsiveness are made possible by the combination of 

edge and cloud computing [7]. 

A key prerequisite for successful AIoT-based smart farming is efficient data collection. Weather, soil conditions, 

biological activities, and human activity all have an impact on agricultural ecosystems, which are quite dynamic [3]. 

Decisions that are not ideal or even detrimental can result from incomplete, inaccurate, or delayed data. Advanced 

sensors with improved durability and accuracy, low-power wide-area networks that facilitate long-range 

communication, and data fusion techniques that combine information from several sources are some of the 

emerging AIoT technologies that tackle this problem. These skills enhance situational awareness in farm 

management at both the macro and micro levels [8]. 

Agricultural decision-making is intrinsically complicated, involving trade-offs between risk, production, cost, 

and environmental impact. Farmers frequently have to make unclear decisions about when and how much to 

fertilize, water, or use crop protection measures. By evaluating data-driven insights and making recommendations 

unique to particular field circumstances, AIoT-based decision support systems help farmers [7]. AIoT systems can 

directly control actuators in more sophisticated implementations, allowing for robotic field activities, controlled 

watering, and greenhouse climate management. Particularly in large-scale or labor-constrained farming operations, 

such automation guarantees prompt interventions and lessens human effort [9]. 

AIoT implementation in agriculture confronts a number of obstacles despite its potential. These include the 

requirement for technical skills among farmers and farm managers, data security and privacy concerns, 

interoperability problems among diverse equipment, and expensive initial investment prices. Furthermore, a lot of 

AI models operate as "black boxes," which might reduce acceptance and confidence when recommendations are 

difficult to understand. Continued research, user-centered system design, supportive legislation, and capacity-

building programs are needed to address these issues [10]. 

     1.1 Scope 

This study focuses on new AIoT technologies that make it possible for smart farming systems to collect data 

effectively and make wise decisions. Crop cultivation, precision irrigation, pest and disease control, soil and water 

monitoring, and some parts of animal monitoring when AIoT is used are all included in the scope [8]. It looks at 

data analytics, communication networks, sensing technologies, and AI-based decision support systems. System 

architectures, real-world applications, advantages, and drawbacks are highlighted in the paper. Only when they are 

directly related to on-farm AIoT deployment are post-harvest processing, supply chain management, and market-

level analytics taken into account [11]. 

   1.2 Objectives 

This paper explores emerging AIoT technologies that improve data collection and decision-making in smart 

farming. Specific objectives include: 

• Reviewing key AIoT components relevant to agriculture. 

• Exploring how AI algorithms utilize IoT-collected data for predictive insights. 

• Analyzing architectures that support real-time data processing. 

• Identifying real-world applications, benefits, and limitations. 

• Suggesting future research directions to address current gaps. 
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2.  RELATED WORK 

 

Over the past 20 years, a lot of research has been done on the use of digital technology in agriculture; early 

studies concentrated on sensor-based monitoring systems and precision agriculture. The utilization of wireless 

sensor networks to gather environmental data, including temperature, humidity, and soil moisture, was the main 

focus of early research [9]. When compared to traditional calendar-based methods, these investigations showed 

that continuous sensing might greatly enhance irrigation scheduling and resource usage. Nevertheless, the majority 

of early systems were limited in their capacity to adjust to changing field conditions since they depended on rule-

based decision mechanisms and static thresholds [12]. 

Several researchers looked at large-scale IoT-enabled agricultural monitoring platforms due to the Internet of 

Things' explosive growth. These studies focused on long-range connectivity using technologies like Zigbee, 

LoRaWAN, and NB-IoT, low-power sensor design, and energy-efficient communication protocols [6]. Field 

deployments demonstrated that IoT devices could function for long stretches of time with no upkeep, making them 

appropriate for big, isolated agricultural fields. However, these platforms provided limited analytical capabilities 

for sophisticated decision making, primarily concentrating on data collection and visualization [13]. 

A major change in related research occurred when machine learning was introduced into agricultural 

applications. To forecast agricultural productivity, categorize soil types, and identify plant diseases, researchers 

started utilizing supervised learning methods, including support vector machines, decision trees, and random 

forests [8]. With the advent of inexpensive cameras and drones, image-based methods gained popularity since they 

allowed computer vision algorithms to automatically identify pests and nutrient deficits. Although these models 

outperformed conventional techniques in terms of accuracy, several of them lacked integration with real-time IoT 

data streams and were trained on offline datasets [14]. 

The confluence of AI and IoT into integrated AIoT frameworks for smart farming has been highlighted more 

and more in recent studies. In order to facilitate real-time analytics and long-term decision support, these studies 

suggest layered architectures that analyze sensor data via edge and cloud computing infrastructures [12]. By 

carrying out initial data filtering and inference close to the data source, edge computing has been emphasized as a 

way to lower latency and bandwidth consumption. According to experimental data, time-sensitive tasks like 

automated irrigation control and anomaly detection in greenhouse conditions can be successfully supported by 

edge-based AI models [15]. 

Deep learning methods for agricultural decision making are the subject of another substantial corpus of related 

work. Using multispectral and hyperspectral imaging, convolutional neural networks have been extensively used 

for crop disease detection, weed categorization, and crop growth monitoring. High classification accuracy has been 

reported by researchers, especially when deep learning models are trained on sizable and varied datasets [13]. 

Weather forecasting and yield estimation have made use of time-series models, such as recurrent neural networks 

and long short-term memory networks. Even though these models perform better, their deployment in resource-

constrained farming situations may be limited since they frequently demand significant computational resources 

and huge labeled datasets [16]. 

Decision support systems that integrate AI models with agronomic information have been the subject of 

numerous studies. To increase robustness and interpretability, these hybrid techniques combine data-driven 

forecasts with expert guidelines. For instance, machine learning predictions based on sensor data have been 

integrated with evapotranspiration models in irrigation recommendation systems. Because the guidelines are in 

line with well-known agronomic concepts, these systems have demonstrated increased adoption among farmers. 

Scalability and customisation across many crops and geographical areas, however, continue to be unresolved issues 

[17]. 

AIoT-based research has also helped livestock farming, especially in the areas of behavior analysis and health 

monitoring. Anomalies in animal locomotion, feeding habits, and vital signs have been identified using wearable 

sensors and computer vision systems. Early disease and stress condition diagnosis is made possible by machine 

learning models built on these data streams. Although encouraging, many studies are restricted to small herds and 

controlled settings, underscoring the need for validation in diverse and large-scale farming situations [18]. 

Numerous related works have addressed security, privacy, and data management challenges. Unauthorized 

access, data manipulation, and denial-of-service attacks are among the vulnerabilities that researchers have found 

in IoT-based agricultural systems. Secure data storage methods, authentication systems, and lightweight encryption 

schemes are some of the suggested remedies. In order to guarantee data integrity and traceability, some research 

has recommended incorporating blockchain technologies. These methods add extra computational and energy 
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overheads, even while they improve trust [19]. 

Table 1: Summarizing key aspects 
Key Area 

Key Technologies 
Used 

 

Main Contributions 
Limitations 
Identified 

 

Sensor-based 
Precision Agriculture 
[20] 

Wireless sensor 
networks, basic IoT 
nodes 

Enabled real-time 
monitoring of soil and 
environmental parameters; 
improved irrigation 
scheduling 

Relied on static 
thresholds; limited 
adaptability and 
intelligence 

IoT-enabled 
Monitoring Platforms 
[21] 

IoT sensors, LPWAN 
(LoRaWAN, NB-IoT), 
cloud dashboards 

Large-scale data collection 
with low power consumption; 
long-term field deployment 

Mostly focused on 
data acquisition and 
visualization; weak 
decision-making 
capabilities 

Machine Learning in 
Agriculture [22] 

SVM, Random Forest, 
Decision Trees 

Improved yield prediction, 
soil classification, and 
disease detection accuracy 

Often offline models, 
limited integration 
with real-time IoT 
data 

Deep Learning for 
Crop Analysis [23] 

CNNs, RNNs, 
multispectral imaging, 
drones 

High accuracy in disease 
detection, weed 
identification, and crop 
monitoring 

High computational 
cost; need for large 
labeled datasets 

Edge Computing-
based Smart Farming 
[24] 

Edge AI, fog computing, 
sensor gateways 

Reduced latency; enabled 
real-time control such as 
automated irrigation 

Limited processing 
power at the edge; 
model complexity 
constraints 

Hybrid Decision 
Support Systems [25] 

AI models + agronomic 
rules 

Improved interpretability 
and farmer acceptance of 
recommendations 

Scalability and 
regional 
customization 
challenges 

AIoT in Livestock 
Monitoring [26] 

Wearable sensors, 
computer vision, ML 
models 

Early detection of health 
issues and behavior 
anomalies 

Mostly validated in 
small-scale or 
controlled 
environments 

Security-focused 
Agricultural IoT [27] 

Encryption, 
authentication, 
blockchain 

Enhanced data integrity, 
privacy, and trust 

Added computational 
and energy overhead; 
complexity 

Integrated AIoT 
Frameworks [28] 

IoT + AI + edge–cloud 
architectures 

End-to-end data collection 
and intelligent decision 
making 

Lack of holistic, cost-
effective, and farmer-
centric solutions 

 

 

3.  AIoT ARCHITECTURE FOR SMART FARMING 
 

A well-designed AIoT architecture that can provide dependable data gathering, effective processing, intelligent 
analytics, and practical decision making is crucial to the success of smart farming systems. Because agricultural 
ecosystems are geographically dispersed and extremely dynamic, they need architectures that are resilient, scalable, 
energy-efficient, and able to function in situations with limited connectivity. To control complexity and guarantee 
a smooth connection between sensing devices, communication networks, computing resources, and end-user 
applications, a layered AIoT design is frequently used [29]. 
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Fig. 1: AIoT Architecture for Smart Farming 
 
 

3.1   Perception Layer: Data Acquisition and Actuation 

By facilitating real-time data collection from the actual farming environment, the perception layer serves as the 

cornerstone of the AIoT architecture. It is made up of several sensing and actuation devices that are placed across 

aquaculture systems, greenhouses, fields, and animal shelters [30]. 

Important variables like temperature, pH, salinity, moisture content, and nutrient levels are measured via soil 

sensors. Rainfall, humidity, wind speed, and sun radiation are among the atmospheric variables that weather 

sensors record. Crop health, growth stages, and stress conditions are evaluated using optical sensors, cameras, and 

multispectral or hyperspectral imagers. Wearable sensors and vision-based systems are used in cattle husbandry to 

track animal movement, feeding habits, and physiological markers [31]. 

Actuators are equally significant parts of this layer. These include robotic tools for weeding or spraying, climate 

control systems, fertilizer dispensers, and irrigation valves. Actuators carry out physical tasks on the farm after 

receiving control signals produced by AI-driven decision modules. Because perception-layer devices are deployed 

outdoors and operate for extended periods of time, reliability, low power consumption, and environmental 

robustness are critical design requirements [32]. 

 

3.2   Communication Layer: Data Transmission and Connectivity 

The communication layer is in charge of sending control commands back to actuators and conveying data from 

sensing devices to processing units. Connectivity is a major difficulty in smart agricultural systems since they 

frequently span broad and rural locations [33]. 

Because of its extended communication range, low energy consumption, and compatibility with tiny data 

packets, low-power wide-area network technologies like LoRaWAN and NB-IoT are frequently deployed. Wi-Fi, 

cellular networks, private LTE, and 5G networks are used for high-bandwidth applications such as picture and video 

transmission from drones or cameras. Gateways compile information from several sensor nodes and provide it to 

cloud platforms or edge servers [34]. 

This layer needs to guarantee secure communication, fault tolerance, and dependable data transmission. In 

dynamic agricultural contexts, adaptive routing, data compression, and scheduling techniques are frequently 

employed to maximize bandwidth utilization and minimize packet loss [35]. 

 

3.3   Edge Computing Layer: Local Processing and Real-Time Intelligence 

By facilitating local processing and analysis, the edge computing layer brings intelligence closer to the data 

source. Data filtering, aggregation, anomaly detection, and real-time AI inference are among the functions carried 

out by edge devices, such as smart gateways or embedded controllers [36]. 

The edge layer lessens reliance on constant cloud connectivity and lowers latency by processing data locally. 

For time-sensitive processes like automated irrigation control, greenhouse climate regulation, and safety-related 
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choices, this is especially crucial. In order to address memory, processing, and energy constraints, lightweight 

machine learning models or compressed deep learning networks are frequently implemented at the edge [37]. 

By reducing the quantity of raw data sent to the cloud, edge computing also improves data privacy. By 

forwarding only pertinent features, summaries, or alerts, communication overhead and exposure to possible 

security risks are decreased [38]. 

 

3.4   Cloud Computing Layer: Centralized Analytics and Model Training 

High-performance processing, scalable storage, and sophisticated analytics are all offered by the cloud 

computing layer. It acts as the focal point for combining data gathered over extended periods of time, from various 

sources, and over several fields or farms [39]. 

This layer uses both historical and current data to train sophisticated AI models. The cloud is usually used for 

tasks like yield forecasts, long-term climate effect assessments, and seasonal resource allocation optimization. 

Additionally, cloud platforms facilitate data fusion, which combines sensor data with other datasets, including 

market data, weather forecasts, and satellite imagery [40]. 

Through recurring retraining and validation, the cloud layer allows AI models to be continuously improved. A 

closed-loop learning system that adjusts to shifting operational and environmental variables can be created by 

deploying updated models back to edge devices [41]. 

 

3.5   Data Management and Integration Layer 

The success of AIoT-based smart farming depends on efficient data handling. Data ingestion, storage, 

preprocessing, labeling, and retrieval are all handled by this layer. Robust data cleaning and normalization 

procedures are necessary because agricultural data are frequently heterogeneous, noisy, and incomplete [42]. 

Semantic data models, time synchronization, and metadata management all contribute to interoperability and 

consistency across many platforms and devices. In order to facilitate more precise and context-aware decision 

making, data integration frameworks allow sensor data to be combined with agronomic knowledge, historical 

records, and other information sources [43]. 

 

3.6   AI and Decision Support Layer 

Converting processed data into useful insights is the responsibility of the AI and decision support layer. It 

houses algorithms for machine learning, deep learning, and optimization that examine trends, forecast results, and 

produce suggestions [44]. 

Irrigation schedules, fertilizer application rates, pest control alerts, and equipment maintenance 

recommendations are examples of decision outputs. By directly activating actuators, this layer also facilitates 

autonomous decision execution in sophisticated systems. For farmers to successfully implement AI-generated 

recommendations, explainability and transparency are crucial factors [45]. 

3.7   Application Layer: User Interaction and Visualization 

Farmers, agronomists, and farm managers can communicate with the AIoT system via interfaces provided by 

the application layer. Real-time sensor data, analytical results, alerts, and recommendations are presented in an 

intuitive way using web dashboards and mobile applications [46]. 

Maps, charts, and trend analysis are examples of visualization tools that aid users in comprehending temporal 

and spatial differences in farm conditions. Strategic planning and well-informed decision-making are supported by 

customizable warnings and reporting tools. To guarantee usability across all technical skill levels, user-centric 

design is essential [47]. 

3.8   Security and Management Layer 

All levels of the AIoT architecture are covered by security and system management functionalities. This covers 
system monitoring, access control, secure data transmission, and device authentication. The smart farming 
infrastructure's long-term dependability and robustness are guaranteed by frequent upgrades, fault detection, and 
remote device management [48]. 

Sensing, communication, intelligence, and action may all be seamlessly coordinated with a well-integrated core 
AIoT architecture. These designs serve as the foundation for next-generation smart farming systems that are 
productive, sustainable, and able to adapt to new challenges by facilitating effective data collection and intelligent 
decision making [49]. 
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4.  EMERGING TECHNOLOGIES FOR DATA COLLECTION 

 

The foundation of AIoT-enabled smart farming is effective and trustworthy data collection. Due to the complexity, 

spatial dispersion, and high degree of dynamic nature of agricultural environments, data collection solutions must be 

precise, reliable, scalable, and energy-efficient. The quality, granularity, and timeliness of agricultural data have been 

greatly improved by recent developments in sensing, imaging, robotics, and connectivity. Important new technologies 

that facilitate sophisticated data collection in smart agricultural systems are covered in this section [50]. 

 

Fig. 2: Smart Farming AIoT Infographic 

 

4.1   Smart Soil and Environmental Sensors 

Data-driven agriculture relies heavily on environmental and soil sensors. Numerous factors, including soil 

moisture, temperature, electrical conductivity, pH, salinity, and nutrient concentrations, can be measured 

simultaneously by contemporary smart sensors. Microcontrollers that carry out local preprocessing, calibration, 

and fault detection are frequently integrated into these sensors [51]. 

Sensor accuracy and durability under challenging field circumstances have improved thanks to developments 

in material science and sensor manufacture. When paired with solar or energy-harvesting devices, energy-efficient 

designs enable long-term deployment with low maintenance. Precise irrigation and fertilization decisions are made 

possible by real-time soil data, which minimizes water waste and nutrient runoff while preserving ideal crop 

development conditions [52]. 

4.2   Weather Monitoring Stations and Microclimate Sensing 

Crop growth, insect dynamics, and irrigation needs are all directly impacted by weather conditions. Compact 

and inexpensive, emerging AIoT-based weather stations can record localized microclimate data, such as rainfall, 

humidity, wind speed, sun radiation, and air pressure [53]. 

Distributed microclimate sensors offer fine-grained spatial data that represents fluctuations within a single 

farm, in contrast to conventional centralized weather stations. AI models for illness prediction, yield forecasting, 

and evapotranspiration calculation are more accurate thanks to this localized data. Predictive performance is 

further improved by integration with external meteorological data [54]. 

 

4.3  Remote Sensing and Satellite-Based Data Collection 

For extensive agricultural surveillance, satellite remote sensing has emerged as a crucial data source. Higher 

spatial, temporal, and spectral resolution made possible by satellite imaging advancements allows for frequent 

monitoring of agricultural conditions across large regions [55]. 

Crop vigor, biomass, and stress levels are frequently evaluated using vegetation indices like NDVI and EVI 

that are generated from satellite data. AIoT platforms combine sensor readings from the ground with satellite 

data to offer multi-scale insights. Although cloud cover and revisit intervals may have an impact on satellite data, 

its extensive coverage makes it useful for strategic planning and regional monitoring [56]. 

 

4.4  Unmanned Aerial Vehicles for High-Resolution Sensing 
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Drones, also referred to as unmanned aerial vehicles, offer versatile and high-resolution data collection 

capabilities. Drones with RGB, multispectral, hyperspectral, and thermal cameras may take precise pictures of crops 

at crucial growth stages [57]. 

Early diagnosis of crop diseases, water stress, nutritional deficits, and insect infestations is made possible by 

drone-based sensing. Aerial imagery is processed by AI algorithms to create field maps that identify trouble spots 

and allow for focused actions. Drones are appropriate for precision agricultural applications because they provide 

superior spatial resolution and on-demand data collection when compared to satellite imaging [58]. 

4.5  Autonomous Ground Robots and Field Rovers 

In smart farming, autonomous field rovers and ground robots are becoming mobile platforms for data 

collection. These devices collect in-situ and close-range data using cameras, LiDAR, soil probes, and environmental 

sensors [59]. 

In situations where aerial platforms have restricted visibility, ground robots can function beneath crop 

canopies. They simultaneously carry out duties like scouting, weeding, or sampling while gathering comprehensive 

data on plant morphology, weed density, and soil conditions. Real-time monitoring and adaptive decision making 

are supported by ground robots' constant data collection [60]. 

4.6   Computer Vision and Imaging Sensors 

In order to collect visual data for crop and livestock monitoring, computer vision technologies are essential. 

Images and videos reflecting plant health, growth stages, and animal activity are gathered by mobile cameras on 

drones and robots, as well as fixed cameras in greenhouses and barns [61]. 

Diseases, weeds, and pests can now be automatically identified thanks to developments in image sensors and 

AI-based vision algorithms. By detecting temperature changes linked to illness or a lack of water, thermal imaging 

sensors help detect stress. In addition to numerical sensor measurements, these visual data sources offer rich 

contextual information [62]. 

4.7  Wearable and Biometric Sensors for Livestock 

Wearable sensors have become a dependable method of ongoing data collection in animal production. These 

devices are affixed to animals and track many data, including feeding behavior, activity levels, heart rate, and body 

temperature [63]. 

The information gathered aids in identifying early indicators of disease, stress, or reproductive cycles. 

Automated alarms and health evaluations are made possible by integration with AI models, which enhances animal 

production and welfare. Additionally, wearable sensors provide position tracking, which helps prevent theft and 

manage pastures [64]. 

4.8   Aquaculture and Water Quality Sensors 

Water quality factors like dissolved oxygen, pH, temperature, turbidity, and ammonia levels are monitored by 

smart aquaculture systems using both surface and underwater sensors. Maintaining healthy aquatic habitats 

requires accurate and ongoing monitoring [65]. 

New sensor technologies provide increased biofouling resistance and sensitivity. AI models are used to assess 

the data gathered from these sensors in order to optimize water exchange, aeration, and feeding schedules, hence 

lowering operating costs and environmental impact [66]. 

 

Table 2: Emerging Technologies for Data Collection in Smart Farming 
Technology 

Data Collected 
 

Key Sensors / Tools Coverage Area Advantages 
Limitations 

 

Smart Soil 
Sensors [67] 

Soil moisture, 
temperature, pH, 
nutrients 

Capacitive sensors, EC 
sensors, pH probes 

Localized 
(field/plot level) 

Real-time, 
high accuracy, 
low power 
consumption 

Limited spatial 
coverage, 
maintenance 
required 

Weather Stations 
[68] 

Rainfall, humidity, 
temperature, wind 
speed, solar 
radiation 

Rain gauges, 
anemometers, 
hygrometers 

Farm or regional 
level 

Supports 
climate-aware 
decisions, 
continuous 
monitoring 

Installation 
cost, 
calibration 
needed 

UAVs (Drones) 
[69] 

Crop health, NDVI, 
canopy cover, pest 
stress 

RGB, multispectral, 
thermal cameras 

Medium to large 
farms 

High-
resolution 
imagery, 
flexible 
deployment 

Weather 
dependent, 
limited battery 
life 
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Satellite Remote 
Sensing [70] 

Vegetation indices, 
soil moisture, land 
use 

Multispectral and 
hyperspectral sensors 

Large-scale and 
regional 

Wide coverage, 
historical data 
availability 

Lower 
resolution, 
data latency 

Smart Imaging 
Systems [71] 

Leaf color, growth 
patterns, pest 
presence 

AI-enabled cameras 
Plant-level 

 

Early disease 
detection, 
automated 
analysis 

High data 
volume, 
processing 
overhead 

Wearable 
Livestock Sensors 
[72] 

Body temperature, 
movement, and 
feeding behavior 

RFID, accelerometers, 
biosensors 

Individual animals Improves 
animal health 
monitoring 

Device cost, 
battery 
replacement 

IoT-Enabled 
Machinery 
Sensors [73] 

Equipment 
performance, fuel 
use, soil 
compaction 

GPS, pressure, 
vibration sensors 

Field operations Enhances 
operational 
efficiency 

Integration 
complexity 

Environmental 
Gas Sensors [74] 

CO₂, NH₃, methane 
levels 

Gas sensors Greenhouses/farms Supports 
climate-
controlled 
farming 

Sensor drift, 
calibration 
needs 

 

 
5.  AI TECHNIQUES FOR DECISION MAKING 

 
 

In order to convert unprocessed agricultural data gathered by AIoT devices into insightful analysis and practical 

choices, artificial intelligence is essential. Uncertainty, non-linearity, and a heavy reliance on biological and 

environmental variables define farming ecosystems. By identifying patterns in both historical and current data, AI 

methods assist in modeling this complexity and facilitate autonomous, predictive, and prescriptive decision-

making. The main AI methods for making decisions in smart farming are covered in this section, along with their 

functions and benefits [75]. 

5.1   Supervised Machine Learning for Predictive Analytics 

When labeled datasets are available, agricultural decision support systems frequently employ supervised 

machine learning algorithms. These models discover correlations between input variables, including crop 

characteristics, weather, and soil parameters, and output variables, like yield, the presence of disease, or water 

requirements [76]. 

Support vector machines, decision trees, random forests, linear regression, and gradient boosting models are 

among the frequently utilized techniques. These methods are used for tasks including disease categorization, soil 

fertility assessment, and agricultural yield prediction. Supervised models are prized for their robust performance 

on structured data and comparatively easy implementation. However, the quality and representativeness of labeled 

training data have a significant impact on their accuracy [77]. 

5.2   Unsupervised Learning for Pattern Discovery 

When labeled data is scarce or unavailable, as is frequently the case in agriculture, unsupervised learning 

techniques are used. Without predetermined outputs, these techniques find hidden patterns, similarities, or 

anomalies in data [78]. 

Fields are divided according to crop growth patterns, soil characteristics, or moisture levels using clustering 

techniques like DBSCAN, k-means, and hierarchical clustering. Abnormal sensor readings, early indicators of 

disease outbreaks, or equipment failures can all be found with the use of anomaly detection tools. Unsupervised 

learning facilitates exploratory analysis and aids agronomists and farmers in comprehending field variability [79]. 

5.3   Deep Learning for Complex Data Analysis 

Because deep learning approaches can handle complicated, high-dimensional data like photos, movies, and 

time-series sensor streams, they have attracted a lot of attention. Convolutional neural networks are widely utilized 

for image-based decision making, such as crop stage categorization using camera or drone imagery, weed 

identification, and plant disease detection [80]. 

Sequential data is used for irrigation planning, yield estimates, and weather forecasting using recurrent neural 

networks and long short-term memory models. Transformer-based designs for multi-modal agricultural data have 

been investigated more recently. Although deep learning models are very accurate, their deployment in resource-

constrained situations may be limited due to their high computing resources and huge dataset requirements [81]. 

5.4   Reinforcement Learning for Adaptive Control 
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For decision-making tasks involving sequential actions and dynamic contexts, reinforcement learning is 

especially well-suited. By interacting with their surroundings and getting feedback in the form of rewards, 

reinforcement learning agents in smart farming discover the best tactics [82]. 

Robotic navigation, greenhouse climate control, and adaptive irrigation scheduling are examples of 

applications. An RL-based irrigation system, for instance, balances crop health and water usage to determine when 

and how much to irrigate. In order to guarantee stable and secure functioning, reinforcement learning necessitates 

lengthy training and careful reward function design [83]. 

5.5   Edge AI for Real-Time Decisions 

Using AI models directly on edge devices, including gateways, microcontrollers, or embedded systems, is 

known as "edge AI." By processing data close to the source, this method lowers latency and dependence on cloud 

connectivity, enabling real-time decision making [84]. 

Edge AI is utilized in agriculture for things like automated actuator control, local anomaly detection, and quick 

pest detection. To overcome hardware limitations, lightweight models, model compression, and quantization 

techniques are frequently used. Particularly in isolated farming regions with poor network connectivity, edge AI 

improves responsiveness and resilience [85]. 

5.6   Hybrid AI Models and Knowledge-Based Systems 

Hybrid AI techniques integrate rule-based systems, domain expertise, and data-driven models. To increase 
robustness and interpretability, these systems combine machine learning predictions with expert rules, crop growth 
models, and agronomic knowledge [86]. 

For example, machine learning predictions based on sensor data can be combined with evapotranspiration 
equations to create irrigation recommendations. By coordinating AI decisions with conventional farming methods, 
hybrid systems boost farmer confidence and promote adoption. However, strong cooperation between AI specialists 
and agriculture experts is necessary for the development and upkeep of such systems [87]. 

5.7   Explainable AI for Trustworthy Decision Making 

Because farmers must comprehend the reasoning behind recommendations, explainability is a crucial 
prerequisite for agricultural decision support. Through the identification of influential elements, the visualization 
of decision paths, or the generation of human-readable explanations, explainable AI techniques offer insights into 
model behavior [88]. 

Predictions about yield, disease risk, or resource allocation are interpreted by users with the aid of techniques 
like feature importance analysis, saliency mapping, and rule extraction. Explainable AI enhances user confidence, 
accountability, and transparency—all of which are critical for the broad adoption of AIoT-based systems [89]. 

 

5.8   Digital Twins and Simulation-Based Decision Support 

By combining sensor data, artificial intelligence models, and simulation tools, digital twin technology generates 

virtual replicas of actual farming systems. Before implementing them in the actual world, these virtual settings 

enable farmers to assess various situations, such as modifications to planting dates or irrigation tactics [90]. 

Digital twins powered by AI facilitate long-term planning, risk assessment, and predictive analysis. Digital 

twins facilitate more proactive and informed decision-making by modeling crop growth and environmental 

interactions [91]. 

5.9   Continuous Learning and Model Adaptation 

Seasonal fluctuations, climatic trends, and management techniques all cause agricultural ecosystems to vary 
throughout time. AI models can adapt by changing their parameters in response to fresh input thanks to continuous 
learning techniques. 

While maintaining data privacy, online learning, transfer learning, and federated learning techniques facilitate 
model evolution. Over several growth seasons, decision-making systems are kept correct and pertinent through 
constant change [92]. 

 
 

Table 3: AI Techniques for Decision Making in Smart Farming 
AI Technique 

Decision-Making 
Role 

 

Input Data Types 
Key 
Advantages 

 

Limitations 
 

Typical Smart 
Farming 
Applications 

 

Rule-Based Systems 
[93] 

Threshold-based 
decisions 

Sensor readings, expert 
rules 

Simple, 
transparent, easy 
to implement 

Rigid, not 
adaptive to 
changing 
conditions 

Basic irrigation 
control, alerts 

Machine Learning 
(Supervised) [94] 

Predictive and 
classification decisions 

Historical sensor data, 
weather data 

High accuracy, 
data-driven 

Requires labeled 
data, retraining 

Yield prediction, 
disease 
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insights needed classification 

Unsupervised 
Learning [95] 

Pattern discovery and 
anomaly detection 

Multivariate sensor data No labeled data 
needed, detects 
unknown 
patterns 

Limited 
interpretability 

Stress detection, 
anomaly 
identification 

Deep Learning [96] Complex decision 
inference 

Images, videos, 
multispectral data 

High precision in 
image-based 
analysis 

High 
computational 
cost, low 
explainability 

Crop disease 
detection, weed 
recognition 

Reinforcement 
Learning [97] 

Sequential decision 
optimization 

State-action-reward data Learns optimal 
policies over time 

Training 
complexity, 
exploration risk 

Irrigation 
scheduling, 
greenhouse 
control 

Fuzzy Logic Systems 
[98] 

Decision making under 
uncertainty 

Imprecise sensor data Handles 
uncertainty well, 
interpretable 

Rule tuning 
required 

Climate control, 
irrigation 
management 

Bayesian Networks 
[99] 

Probabilistic reasoning Sensor data, prior 
knowledge 

Manages 
uncertainty, 
supports 
reasoning 

Computational 
complexity 

Pest outbreak 
prediction, risk 
assessment 

Ensemble Learning 
[3] 

Robust decision 
support 

Multiple model outputs Improved 
accuracy and 
reliability 

Higher 
computation cost 

Crop yield 
estimation, 
disease diagnosis 

Edge AI Models [7] Real-time local 
decisions 

Streaming sensor data Low latency, 
reduced 
bandwidth usage 

Limited model 
complexity 

Automated 
irrigation, real-
time alerts 

Hybrid AI Models 
[11] 

Integrated decision 
frameworks 

AI models + agronomic 
rules 

Balanced 
accuracy and 
interpretability 

Design 
complexity 

Precision 
farming decision 
support 

 
 
 

6.  BENEFITS AND IMPACTS 
 
 

The productivity, sustainability, and resilience of agriculture are significantly impacted by the use of AIoT technology 
in smart farming. AIoT-based solutions convert conventional farming methods into precision-driven operations by 
facilitating ongoing data collection, intelligent analysis, and prompt decision-making. The main advantages and 
effects of AIoT in agriculture from an economic, environmental, and social perspective are covered in this section [7]. 
 

6.1   Enhanced Resource Efficiency 
 
Increased efficiency in the use of vital resources like water, fertilizer, energy, and agrochemicals is one of the 

biggest advantages of AIoT in smart farming. Based on current soil moisture and meteorological circumstances, 
sensor-driven irrigation systems only provide water when and where it is required. In a similar vein, AI-guided 
precision fertilization eliminates fertilizer waste and lowers runoff into nearby ecosystems [13]. 

In addition to reducing input costs, optimal resource usage increases the availability of limited resources, 
especially in water-stressed areas. Long-term agricultural sustainability and better environmental stewardship are 
facilitated by this efficiency [15]. 

 
6.2   Increased Crop Yield and Quality 
 
By facilitating the early detection of stress factors, including pests, illnesses, nutrient deficits, and water 

limitations, AIoT-enabled decision support systems increase crop production. Farmers can reduce production 
losses and improve crop health by intervening at the best time through continuous monitoring and predictive 
analytics [17]. 

Furthermore, consistent crop development and higher quality are the results of exact control over growing 
circumstances. This leads to lower post-harvest losses and higher market prices for high-value commodities like 
fruits and vegetables [19]. 

 
 
6.3   Cost Reduction and Economic Gains 
 
Automation and smart decision-making cut operational inefficiencies and lessen reliance on manual labor. AI-

guided spraying, robotic weeding, and autonomous irrigation all lower labor needs and related expenses. 
Additionally, early problem discovery avoids costly large-scale interventions later in the growth cycle [88]. 

These efficiencies result in increased profitability and a higher return on investment for farmers. Adoption of 
AIoT on a larger scale boosts rural development and agriculture's economic viability [21]. 
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6.4   Risk Mitigation and Climate Resilience 
 
Extreme weather events and climatic variability pose a serious threat to agriculture. By offering real-time 

monitoring and forecasting insights regarding weather patterns, soil conditions, and crop responses, AIoT systems 
increase resilience [87]. 

AI-driven forecasting models provide proactive planning and mitigation methods by assisting farmers in 
anticipating risks like disease outbreaks, floods, and droughts. In the face of shifting climatic conditions, this risk-
aware decision-making helps stabilize agricultural output by lowering uncertainty [23]. 

 
6.5   Environmental Sustainability 
 
AIoT technologies greatly lessen farming's environmental impact by making it possible to apply water, 

fertilizer, and pesticides precisely. Reduced use of chemicals reduces biodiversity loss, water pollution, and soil 
degradation [28]. 

AIoT-enabled sustainable farming methods enhance soil health, lower greenhouse gas emissions, and promote 
resource conservation. Long-term ecological balance and agricultural productivity are matched by these 
environmental advantages [85]. 

 
6.6   Improved Farm Management and Decision Transparency 
 
AIoT technologies give farmers access to extensive dashboards that display historical and real-time data from 

various aspects of agricultural operations. Strategic planning, performance evaluation, and well-informed decision 
making are all supported by this holistic perspective [30]. 

Transparent statistics and explainable AI boost confidence in automated suggestions. More adoption and 
efficient use of AI-driven technologies result from farmers having a better knowledge of how decisions are made 
[83]. 

 
6.7   Support for Smallholder and Precision Farming 
AIoT technologies that are affordable and easy to use can help small and medium-sized farmers by giving them 

access to precision agricultural methods that were previously only available to large commercial enterprises [80]. 
Localized AI models, mobile-based decision support, and inexpensive sensors assist smallholders in increasing 

yields and optimizing inputs. This democratization of technology lessens inequalities in agricultural output and 
promotes food security [33]. 

 
6.8   Social and Labor Impacts 
 
Adoption of AIoT reduces physically taxing and repetitive chores, changing the character of agricultural labor. 

Farmers may concentrate on higher-level management tasks thanks to automation, which also enhances working 
conditions [35]. 

Simultaneously, the need for digital skills in agriculture opens up new job, training, and innovation 
opportunities in rural areas. Future generations will find the agriculture sector more appealing and modern as a 
result of these societal effects [79]. 

 
 

7.  CHALLENGES AND LIMITATIONS 
 
Even though AIoT-based smart agricultural systems have many advantages, there are a number of 

technological, financial, and societal obstacles that limit their widespread use and long-term efficacy. Unlike 
conventional industrial or urban IoT contexts, agricultural ecosystems have particular limitations. The main 
obstacles and restrictions related to implementing AIoT technology in smart farming are covered in this section 
[36]. 

7.1   Connectivity and Infrastructure Constraints 

Reliable network access is still a significant problem, especially in rural and isolated agricultural areas. Real-

time data transfer to cloud platforms is limited in many farms because they lack reliable cellphone service or high-

speed internet. Despite offering long-range connectivity, low-power wide-area networks like LoRaWAN and NB-

IoT may not be appropriate for bandwidth-intensive applications like drone video streaming due to their restricted 

data rate support [78]. 

Reduced system responsiveness, information loss, and data delays can result from infrastructure constraints. 

These limitations make it more difficult to implement cloud-dependent AI models and emphasize the necessity of 

reliable edge computing solutions [38]. 
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7.2   Data Quality, Reliability, and Sensor Limitations 

The accuracy and dependability of gathered data are critical to AI-driven decision-making. Sensors are 

subjected to severe environmental factors in agricultural environments, including dust, wetness, extremely high or 

low temperatures, and physical harm. Inaccurate or missing data might result from hardware malfunctions, sensor 

drift, and calibration mistakes [40]. 

7.3   Scalability and System Integration 

Heterogeneous equipment from many suppliers, each utilizing distinct data formats and communication 

protocols, is frequently used in smart agricultural systems. It is very difficult to integrate sensors, drones, robotics, 

edge devices, and cloud platforms seamlessly [77]. 

Managing thousands of connected devices is harder as farms get bigger or more complicated. System flexibility 

and scalability might be hampered by vendor lock-in, interoperability problems, and a lack of defined data models 

[75]. 

7.4   Computational and Energy Constraints 

Many AIoT components, especially sensor nodes and edge devices, are subject to stringent computational and 

energy limitations. Advanced AI models must be simplified, compressed, or offloaded to the cloud to be deployed 

on low-power hardware []39. 

System lifetime and maintenance needs are also impacted by energy constraints. Although energy harvesting 

methods present viable options, they are not yet consistently dependable in all agricultural settings. A crucial 

problem is still striking a balance between model accuracy, computational load, and energy usage [41]. 

7.5   Security and Privacy Risks 

Cybersecurity risks, such as illegal access, data manipulation, and denial-of-service attacks, can affect AIoT-

based smart farming systems. Compromised systems may cause equipment damage, interfere with farm operations, 

or result in poor decision-making [43]. 

Another issue is data privacy, especially when sensitive farm data is handled or kept in the cloud. Concerns 

about data ownership, misuse, or commercial exploitation may make farmers hesitant to provide operational data. 

System complexity and operating expenses rise when strong security measures are put in place [74]. 

7.6   High Initial Investment and Cost Barriers 

AIoT technology deployment frequently necessitates a sizable upfront investment in software platforms, 

sensors, communication infrastructure, and computational power. These expenses may be unaffordable for small 

and medium-sized farmers [71]. 

Adoption is further constrained by continuing maintenance, data services, and system upgrade costs in 

addition to the original outlay. Many farmers could be reluctant to invest in AIoT solutions in the absence of clear 

short-term economic rewards or financial support methods [77]. 

7.7   Model Generalization and Adaptability 

AI models that were trained on data from particular areas, crops, or seasons might not adapt well to other 
settings. Model performance can be greatly impacted by variations in crop kinds, agricultural methods, climate, and 
soil type [65]. 

To maintain accuracy, frequent retraining and modification are frequently necessary, which increases 
operational complexity. A persistent research challenge is ensuring model adaptability while minimizing retraining 
costs [66]. 

 
 

Table 4: Challenges and Limitations of AIoT-based Smart Farming Systems 

 
Category [49] 

Challenge / 
Limitation 

 

Description 
Impact on Smart 
Farming 

 

Possible 
Mitigation 
Approaches 

 

Infrastructure [53] Limited connectivity Poor internet and cellular 
coverage in rural areas 

Delayed data 
transmission and 
decision making 

LPWAN, edge 
computing, hybrid 
networks 

Data Quality [67] 
Sensor noise and failures 

 

Harsh field conditions 
affect sensor accuracy 

Incorrect AI 
predictions 

Sensor redundancy, 
data validation 

Scalability [2] Heterogeneous devices Multiple vendors and 
protocols 

Integration and 
management 
complexity 

Standardized 
protocols, 
middleware 
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Computation [11] 
Limited edge resources 

 

Low processing power and 
memory 

Restricts advanced 
AI deployment 

Model 
compression, edge–
cloud offloading 

Energy [89] Power constraints Battery-operated devices 
require frequent 
maintenance 

Reduced system 
reliability Energy 

harvesting, low-
power AI models 

 

Security [44] Cyber threats Unauthorized access and 
data manipulation 

Operational 
disruptions and data 
loss 

Encryption, 
authentication, 
secure firmware 

Privacy [34] Data ownership concerns Fear of misuse of farm data Low farmer trust and 
adoption 

Clear data 
governance policies 

Cost [33] 
High initial investment 

 

Sensors, drones, AI 
platforms are expensive 

Barrier for small-
scale farmers 

Subsidies, low-cost 
AIoT solutions 

AI Models [19] Poor generalization Models trained for specific 
regions 

Reduced accuracy in 
new environments 

Transfer learning, 
localized training 

Explainability [35] 
Black-box decisions 

 

Lack of transparency in AI 
outputs 

Low user trust Explainable AI 
techniques 

Skills [88] Technical skill gap Limited digital literacy 
among farmers 

Improper system 
usage 

Training and 
extension services 

Regulatory [99] Policy uncertainty Lack of standards and 
regulations Slows adoption 

 

Regulatory 
frameworks and 
guidelines 

 
 

 
8.  CONCLUSION 

 

A strong technological basis for the development of smart farming has been introduced by the combination of artificial 

intelligence and the Internet of Things. Many of the drawbacks of conventional agricultural methods are addressed by 

AIoT-based systems, which allow for ongoing data collection, intelligent analysis, and prompt decision-making. 

Farmers may monitor field conditions with high precision and take proactive measures to address operational and 

environmental concerns by utilizing a variety of AI methodologies, edge and cloud computing, and advanced sensing 

technology. 

This study demonstrates how new AIoT technologies assist sustainable agricultural methods, increase crop output and 

quality, lower operating costs, and improve resource efficiency. AIoT systems reduce risks associated with resource 

scarcity, pest outbreaks, and climatic unpredictability by enabling data-driven and automated decisions. The analysis 

also shows that the implementation of AIoT has wider effects, strengthening food security, enhancing agricultural 

management, and conserving the environment. 

Notwithstanding these benefits, there are still a number of obstacles to overcome, such as infrastructure constraints, 

problems with data quality, security difficulties, high upfront expenses, and the requirement for explainable and 

flexible AI models. Continued research, standardization, and cooperation between technologists, agricultural 

specialists, legislators, and farmers are necessary to address these issues. To guarantee widespread adoption, 

especially among small and medium-sized farmers, an emphasis on user-centric design, cost, and capacity building is 

crucial. 

All things considered, AIoT is a revolutionary approach to contemporary agriculture. AIoT-enabled smart farming can 

be crucial in creating resilient, effective, and sustainable agricultural systems that can fulfill future global food 

demands with further innovation and supportive frameworks. 
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