International Journal of Communication Networks and Information

Security

2026, 18(1)

ISSN: 2073-607X,2076-0930

https://https://ijenis.org/ Research Article

Security and Privacy in Industry 5.0: Emerging Technical
Challenges and Future Pathways

Vinoth R!, Omkar Singh'", Navanendra Singh!, Abhilasha Singh:

1 Assistant Professor, National Institute of Fashion Technology, Patna, India

*Corresponding Author: omkar.singh@nift.ac.in

ARTICLE INFO ABSTRACT

Received: 05-12-2025 A human-centered, resilient, and sustainable industrial ecosystem where people and intelligent
Accepted: 24-12-2025 systems work closely together is what Industry 5.0 offers. As industrial systems become more
dispersed, data-rich, and interactive, security and privacy threats increase even as efficiency and
customization gains are unlocked. The Privacy-Preserving Federated Edge Ledger (PFEL), an
integrated, novel framework that combines federated learning, lightweight distributed ledgers, trusted
execution environments, adaptive trust scoring, and fine-grained differential privacy to protect data
and decision integrity without compromising human-in-the-loop responsiveness, is presented in this
paper along with a focused analysis of the fundamental security and privacy challenges in Industry 5.0
and a survey of pertinent technical building blocks. We offer an Industry 5.0-specific threat model,
describe the architecture of PFEL, outline safe model aggregation and auditability procedures,
examine security and performance trade-offs, and suggest an assessment roadmap with quantifiable
metrics. Lastly, we highlight future directions that harmonize security and privacy design with human-
centric industrial ideals and examine wider socio-technical and legal ramifications.
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1. INTRODUCTION

The automation-driven perspective of earlier industrial revolutions has given way to a more human-centered
and cooperative approach with Industry 5.0 [1]. The new paradigm integrates people, intelligent machines, and
linked systems to build adaptable, sustainable, and customized industrial settings rather than concentrating just on
efficiency and cost reduction. Because of this change, factories and supply chains now have a larger digital footprint,
and security and privacy are now crucial to the development, implementation, and management of these systems
[2].

Real value in Industry 5.0 is derived from ongoing human, machine, and data interaction. Large amounts of
highly contextual data are produced by sensors, robots, wearables, smart tools, and edge devices. A large portion of
this data is directly related to employees, production settings, and client demands [3]. Such data creates additional
dangers when it travels between networks, cloud services, and collaborative platforms. Attackers may attack
operational systems, take advantage of personal information, alter models that direct autonomous decision-making,
or interfere with human-machine cooperation. The environment as a whole can be impacted by a single breach in
terms of productivity, safety, and trust [4].

In this new environment, traditional security models—which mostly rely on perimeter defense and centralized
monitoring—struggle. Industrial systems are no longer limited by borders. They rely on multi-vendor
interconnections, remote maintenance, distributed intelligence, and quick reconfiguration. Due to these changes,
security systems must be able to function near the edge, adjust to changing circumstances, and safeguard data
without impeding vital activities [5].
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Expectations for privacy have also increased. Customers and employees seek assurances that personal data is
gathered ethically and utilized exclusively for authorized reasons. Industrial data handling must adhere to
regulations that demand accountability, minimization, and transparency. This creates an additional layer of
difficulty since, if improperly safeguarded, the same data utilized to enhance quality or safety may potentially reveal
sensitive organizational or personal information [6].

Artificial intelligence, human interaction, and cyber-physical systems combine to produce situations where
security and privacy lapses can directly affect people. A robot operating alongside a human could be misled by a
modified model. Confidential production techniques or worker health indicators could be revealed by a leaked
dataset. Long-term infiltration may start with a vulnerable supply-chain component [7].

These issues highlight the need for fresh approaches that strike a balance between operational resilience, data
security, and real-time performance. In this field, strategies including distributed ledgers, lightweight cryptography,
federated learning, privacy-preserving analytics, trusted hardware, and adaptive trust management are becoming
indispensable technologies [8]. In order for employees to maintain control, comprehend system behavior, and have
faith in automated judgments, these technologies must be implemented in accordance with human-centered design
principles [9].

In addition to outlining technical solutions that promote secure, open, and resilient industrial ecosystems, this
article examines the new security and privacy issues raised by Industry 5.0. It explains why traditional methods are
no longer sufficient and offers integrated concepts that support Industry 5.0's three main tenets: human
empowerment, sustainability, and collaboration [10].

1.1 Motivation of the Research

The increasing necessity to safeguard the next generation of human-centered industrial systems is the driving
force behind this research. The hazards associated with data exploitation, system manipulation, and privacy
violations rise rapidly as Industry 5.0 brings humans and intelligent computers closer than before. Modern
industrial settings rely on edge intelligence, real-time analytics, and customized workflows, which create intricate
security requirements that are beyond the capabilities of conventional models [11]. Attacks on these systems have
the potential to jeopardize worker safety, interfere with production, and erode supply chain trust. Industries must
adhere to stringent privacy laws while still utilizing data to boost productivity and assist human decision-making.
As a result, there is a disconnect between current security measures and operational requirements [12]. New ideas,
innovative designs, and methods that can protect data without impeding industrial operations are needed to close
this gap. By examining new issues and suggesting solutions specific to Industry 5.0, the research seeks to address
this requirement [13].

1.2 Key contributions and roadmap of the article
The key contributions of the article are as follows:

e The study provides a structured analysis of the unique security and privacy challenges that arise from human-
machine collaboration and distributed intelligence in Industry 5.0 environments.

e It introduces a new integrated architecture that combines federated learning, edge intelligence, trusted
hardware, and privacy-preserving techniques tailored for industrial workflows.

e The work proposes an adaptive trust management model that detects malicious behavior, improves model
integrity, and supports secure collaboration across heterogeneous devices.

e Itoutlines a tamper-evident audit mechanism using lightweight ledger commitments to ensure accountability
without exposing sensitive industrial data.

e The paper offers a comprehensive roadmap and evaluation plan that can guide real-world deployment and
further research on secure and privacy-aware Industry 5.0 systems.
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2. RELATED WORK

As manufacturing systems move toward increased autonomy, data exchange, and human-machine
collaboration, research on security and privacy in modern industrial contexts has changed quickly. Securing
Industrial Internet of Things (IIoT) architectures under Industry 4.0 was a major focus of early research [14]. This
research mostly focused on secure data storage, intrusion detection, device authentication, and communication
protection. Although these contributions established solid groundwork, they frequently relied on centralized data
pipelines, machine-centric automation, and minimal human participation in decision loops [15]. Many current
methods are unable to manage the volume, sensitivity, and contextual complexity of data generated in collaborative
industrial settings, and Industry 5.0 brings new dynamics.

Secure IIoT communication is one of the most important areas of related research. To protect devices with
limited resources, researchers have suggested identity frameworks, key-management strategies, and lightweight
encryption [16]. These frameworks do not entirely account for ongoing data flows between humans, robots, and
adaptive edge systems, but they do guarantee fundamental confidentiality and authenticity. Similar to this, research
on secure cyber-physical systems (CPS) has looked at attack responses and control-loop vulnerabilities, providing
models for robust operation and anomaly detection. These methods are useful, but the majority do not take into
account the privacy implications of gathering specific employee or customer data and instead presume predictable
computer behavior [17].

Machine learning and analytics that protect privacy constitute a second significant field of related development.
Because it enables businesses to train models without aggregating raw data, federated learning (FL) has garnered a
lot of attention [18]. Its advantages for anomaly detection, predictive maintenance, and industrial monitoring have
been investigated. Nevertheless, FL is susceptible to inference attacks, gradient leaking, poisoning, and backdoors.
Through secure aggregation, differential privacy, anomaly scoring, and cryptographic safeguards, researchers have
tried to reduce these dangers. While these techniques improve anonymity, they frequently result in computational
cost or delays that are challenging to handle in industrial settings when time is of the essence [19].

Another pertinent area of study is Trusted Execution Environments (TEEs). TEEs are appealing for safe data
processing and aggregation because they offer hardware-backed defense against operating-system level threats.
TEEs can separate sensitive tasks and stop tampering in cloud or edge servers, according to numerous studies [20].
However, they have disadvantages such as hardware dependence, side-channel vulnerability, and limited memory.
Because it is not feasible to use TEEs alone in large industrial networks, research has focused on hybrid techniques
that combine TEEs with permissioned ledgers or secure multiparty computation [21].

Recent research on industrial security has also heavily relied on blockchain and distributed ledgers.
Blockchain-based firmware upgrades, data-sharing methods, audit trails, and access restrictions have all been
suggested by researchers [22]. These systems are prized for their decentralized trust and immutability. However,
consensus techniques might result in latency issues in real-time processes, and putting industrial data directly on-
chain presents privacy concerns. Although there are yet few industrial implementations, some research proposes
combining off-chain storage with on-chain verification to balance performance and accountability [23].

Another crucial issue in distributed industrial systems is trust management. The detection of rogue nodes,
faulty devices, or anomalous behavior in sensor networks is the main emphasis of current reputation and trust
models [24]. These models perform rather well in closed contexts, but they frequently are not flexible enough for a
variety of industry situations that include dynamic worker interactions, changing device quality, and frequent
reconfiguration. In order to enhance human-centric processes, machine learning-based scoring, cross-validation,
and behavioral profiling need to be further refined, according to recent studies [25].

New security and privacy issues are brought forth by human-robot collaboration (HRC). This area of study
looks at ways to guarantee secure interactions and stop negative behavior brought on by malicious data or system
errors [26]. Research identifies attack vectors such as sensor input manipulation, decision model interference, and
robot miscalibration. Nonetheless, a lot of works prioritize physical safety while paying little regard to data privacy.
Protecting these sensitive data streams becomes crucial as robots depend more and more on worker posture,
gesture, and biometric cues [27].

Studies on ethics and regulations also support related research. Researchers examine how industrial data
governance and system design are impacted by privacy legislation, such as data protection laws [28]. They contend
that technological safeguards must be in line with cultural norms and human rights, emphasizing responsibility,
openness, and data reduction. These viewpoints are essential for Industry 5.0, which places equal emphasis on
productivity and efficiency as well as human dignity and well-being [29].
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The move toward edge computing and distributed intelligence is highlighted by current research developments.
By processing data closer to its source, edge-centric designs lower latency and enhance privacy. Research suggests
secure edge frameworks that make use of secure updating techniques, adaptive access control, local encryption, and
container isolation. While these methods increase responsiveness, they challenge standard security solutions by
introducing heterogeneity and resource limitations [30].

All things considered, the corpus of linked work offers solid foundations in distributed ledgers, trusted
hardware, secure I10T, privacy-preserving analytics, and human-machine safety. However, when it comes to
combining these components into a coherent strategy that satisfies the particular requirements of Industry 5.0,
there is still a discernible gap [31]. A complicated environment where data sensitivity, operational timing, trust, and
system responsibility are linked is created by the tight contact between humans and intelligent machines. Rarely do
current models handle these junctions from beginning to end. Instead of integrating security and privacy with
system performance, human oversight, and ethical design principles, many researchers consider them as distinct
issues [32].

By suggesting an integrated approach that combines federated learning, edge intelligence, differential privacy,
trusted execution, and ledger-based auditability within a human-centered industrial framework, this study expands
upon these previous contributions. In settings where humans and intelligent machines must collaborate seamlessly,
the objective is not only to safeguard data and systems but also to guarantee transparency, resilience, and reliability

[33].

3. INDUSTRY 5.0: CHARACTERISTICS THAT IMPACT SECURITY AND PRIVACY

Industry 5.0 represents a change from automation-focused manufacturing to a cooperative framework in which
intelligent systems and people collaborate. Advanced sensing, learning, networking, and decision-support
technologies are driving this shift; while they present new opportunities, they also pose difficult security and privacy
issues [34]. Understanding the relationship between digital trust and next-generation industrial ecosystems is
essential because the distinctive features of this period influence how data is created, exchanged, processed, and
safeguarded [35].

Table 1: Industry 4.0 vs Industry 5.0 in Terms of Security and Privacy Parameters

Parameter Industry 4.0 Industry 5.0 Security and Privacy
Impact
Human—Machine Focus on automation; | Human-robot More exposure of

Interaction [36] limited human | collaboration and | biometric, behavioral, and
collaboration human-centric contextual data
operations
Connectivity  Level | Machine-to-machine, | Hyper-connected Larger attack surface,
[37] IoT-centric networks systems with | complex multi-layered

humans, robots, edge | protection required

devices, and cloud

modular systems

Data Generation [38] | Structured  machine | Mix of machine, | Higher risk of personal
data human, sensor, | data leakage and profiling
wearable, and
contextual data
Real-Time Mostly  cloud-based | Real-time edge | Vulnerability to edge
Processing [39] analytics intelligence and | attacks, data tampering,
distributed decision- | and model poisoning
making
Al Integration [40] Centralized machine | Distributed and | Need for secure model
learning collaborative Al | aggregation and
including federated | protection from malicious
learning updates
System Architecture | Hierarchical cyber- | Decentralized, More entry points for
[41] physical systems adaptive, and | attackers and complex

trust management

Sustainability Focus

Efficiency-driven

Strong emphasis on

Requires transparent data

[42] ethical, sustainable, | handling and privacy-
and responsible | aware analytics
operations
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Digital Twins [43] Used for machine | Integrated with | Threats to worker identity,
monitoring human digital twins | behavioral patterns, and

and workforce | safety data
analytics

Supply Chain | Linear and partially | Highly collaborative | Cross-enterprise

Collaboration [44] integrated networks multi-stakeholder vulnerabilities and
ecosystems inconsistent security

policies
Communication IoT, Ethernet, Wi-Fi, High-speed attacks

Widespread 5G/6G,
TSN, URLLC, and
industrial-grade

possible; requires
advanced encryption and
access control

Technologies [45] and partial 5G

wireless
Decision Support | Automation-led Human-enhanced Sensitive worker feedback
[46] decision-making and context-aware | data must be protected
decision systems
Data Ownership [47] | Mostly enterprise- | Shared  ownership | Need for clear governance,
controlled among humans, | consent, and data
machines, and | minimization
external partners
System  Resilience | Focus on fault | Resilient, Greater  reliance  on
[48] tolerance collaborative, and | secure-by-design practices
ethical systems and threat monitoring

4. EXISTING TECHNICAL BUILDING BLOCKS

Several technologies that enable intelligent, networked, and human-centered industrial settings are essential
to Industry 5.0. The technical basis for safe and privacy-conscious operations is formed by these basic blocks.
Knowing them makes it easier to determine where present strengths exist and where more innovation is required

[49].

e N e N )
Confidential Trusted Distributed
Computing Execution Ledger
Environments Technology
[ Lo
. J - J \. J

Fig. 1: Existing Technical Building Blocks Diagram

4.1 Industrial Internet of Things (IIoT) Platforms

Real-time communication between machines, sensors, controllers, and robotics is made possible via IIoT
systems. They offer edge filtering, data collection, protocol translation, and device administration. These systems
facilitate interoperability between various industrial networks, including industrial Ethernet, Modbus, and OPC-
UA [50]. IIoT increases vulnerability to firmware assaults, protocol-level exploits, and illegal access, even while it
also improves visibility and operational efficiency. For secure deployment, enhancing authentication and ongoing
monitoring are still crucial [51].

4.2 5G and Next-Generation Industrial Networks

Industry 5.0 relies heavily on high-bandwidth, low-latency networks like 5G, 6G-in-development, TSN, and
URLLC. These technologies facilitate energy-efficient connectivity across factories, real-time analytics, and remote
robot control [52]. Traffic prioritization and isolation are enhanced by features like network slicing and private 5G
networks. These networks still have issues like spoofing, jamming, and incorrectly set slices, even if they provide
quicker and safer communication. Secure network orchestration and effective key management are essential [53].
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4.3 Edge Computing and Fog Architectures

By processing data as close to machines and robots as possible, edge computing minimizes latency. As
intermediary layers, fog nodes facilitate model inference, real-time control, and pre-processing. This architecture
shields sensitive data from needless transfer while lessening the strain on centralized cloud infrastructure. However,
edge devices are susceptible to manipulation, malware injection, and denial-of-service assaults due to their limited
processing power and physical exposure. These days, secure boot procedures and lightweight encryption are
popular defenses [54].

4.4 Artificial Intelligence and Machine Learning Pipelines

Predictive maintenance, fault detection, worker assistance systems, and production optimization all heavily
rely on Al Data collection, feature extraction, model training, and deployment on edge or cloud infrastructure are
all included in machine learning pipelines. Although these systems increase robustness and accuracy, they also
come with hazards like biased model outputs, poisoned datasets, and hostile manipulation. Model integrity is
safeguarded via hostile awareness strategies and secure machine learning frameworks [55].

4.5 Federated Learning and Collaborative Model Training

Distributed devices can train models without exchanging raw data thanks to federated learning. Supply chain
optimization, quality prediction, and worker behavior analysis can all benefit from this approach. Although it lowers
privacy risks, it creates additional avenues for attack, including compromised aggregator nodes, inference attacks,
and model poisoning. Differential privacy, safe aggregation, and trust-weighted updates are used in current
methods, but they still require improvement to withstand coordinated attacks [56].

4.6 Blockchain and Distributed Ledger Technologies

Blockchain offers tamper-proof transaction records, decentralized trust, and unchangeable logs. It facilitates
safe data sharing, model authentication, supply chain traceability, and access control in Industry 5.0. Smart
contracts lessen dependency on centralized authorities by automating verification procedures. However, significant
latency and resource consumption are problems with conventional blockchain systems. To better suit industrial
settings, lightweight blockchain frameworks and hybrid chain methods are also being investigated [57].

4.7 Digital Twins for Real-Time Monitoring and Simulation

Digital twins replicate how workers, production lines, and robots behave. They facilitate scenario testing,
remote control, and predictive analytics. Digital twins rely on constant data inputs from sensors and robots for real-
time synchronization. The twin becomes erroneous if this data is tampered with or intercepted. Trusted digital twin
environments are maintained with the use of secure data pipelines, integrity checks, and anomaly detection
technologies [58].

4.8 Robotic Systems and Collaborative Cobots

Flexible production relies heavily on autonomous mobile robots, robotic arms, and cooperative cobots.
Contemporary cobots collaborate with people using sophisticated sensing, machine vision, and safety frameworks.
Real-time decision-making is necessary for these systems to prevent collisions and help employees. Unsafe activities
may result from security flaws in sensor feeds, wireless connections, or robot firmware. These days, hardened
firmware, approved data inputs, and secure robot operating systems are standard security procedures [59].

4.9 Cloud Computing and Industrial Data Lakes

Cloud platforms facilitate enterprise-level optimization, digital twin management, historical data storage, and
large-scale analytics. Sensor logs, production reports, employee analytics, and business systems are all integrated
into industrial data lakes. Cloud solutions provide scalability, but they also increase reliance on external security
measures. Common issues include cross-tenant risks, poor access control, and misconfigurations. Encrypted data
pipelines and zero-trust policies aid in reducing these problems [60].

4.10 Cybersecurity Frameworks and Access Control Mechanisms

Industrial activities are protected by a range of security frameworks, including encrypted communication
protocols, identity and access management systems, and zero-trust architecture. Protection is strengthened by
methods including token-based access, multi-factor authentication, and ongoing threat monitoring. Enforcing
uniform policies in multi-vendor industrial settings is still challenging, even with these technologies. Complete
security standardization is still hampered by compatibility and scalability issues [61].
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The sorts of adversaries, their capabilities, attack surfaces, and potential weak areas in the system are all
described in a threat model. The special characteristics of human-robot cooperation, highly interconnected
industrial networks, dispersed learning pipelines, and the merging of operational and personal data must all be
addressed by this model for Industry 5.0. The threat landscape, attacker characteristics, targeted assets, and

5. THREAT MODEL

possible attack pathways are described in the section that follows [62].

Table 2: Threat Model- Adversary Types, Capabilities, and Security Goals

backdoors, and compromising third-

Adversary Type eyene Threatened Security

Capabilities Goals (CIA + Privacy
+ Safety)

External Attacker [63] Network scanning, exploiting open | Confidentiality,
ports, brute-force attacks, malware | Integrity, Availability
injection, MITM attacks, DoS/DDoS

Insider (Malicious | Authorized access to systems, misuse of | Confidentiality,

Employee [64] credentials, data exfiltration, sabotage | Integrity, Privacy, Safety
of machine settings

Insider (Unintentional) [65] | Weak password use, accidental data | Integrity, Availability,
sharing, misconfiguring devices, and | Privacy
falling for phishing

Supply Chain Attacker [66] | Tampering with firmware, introducing | Integrity,

Confidentiality, Safety

party software updates
Advanced Persistent Threat | Stealthy infiltration, long-term | Confidentiality,
(APT) [67] surveillance, privilege escalation, | Integrity, Availability,
coordinated multi-vector attacks Privacy
Rogue Edge Device / | Injecting false sensor data, altering ML | Integrity, Safety,
Compromised Node [68] model updates, disrupting edge | Availability
analytics

Adversarial AT Attacker [69]

Creating adversarial inputs, poisoning
federated learning models, reverse
engineering model behavior

Integrity, Privacy, Safety

Physical Intruder [70] Tampering with IoT devices, accessing | Safety, Integrity,
exposed ports, manipulating robot | Availability
sensors

Cybercriminal Group [71] Ransomware deployment, financial | Confidentiality,
extortion, IP theft, data leakage to dark | Availability,  Financial
markets security

Industrial Competitor [72]

Espionage, stealing digital twin models,
monitoring  production  patterns,
profiling workforce behavior

Confidentiality, Privacy,
Integrity

6. PRIVACY-PRESERVING FEDERATED EDGE LEDGER

A comprehensive security and privacy framework for Industry 5.0 contexts is called the Privacy-Preserving
Federated Edge Ledger (PFEL). It creates a safe environment for distributed industrial intelligence and human-
machine cooperation by combining federated learning, edge computing, blockchain-based ledgers, and privacy-
enhancing technologies. By facilitating real-time analytics, decentralized trust, and secure data sharing among
hundreds of networked industrial organizations, PFEL overcomes the drawbacks of conventional centralized

systems [73].
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Fig. 2: Privacy-Preserving Federated Edge System

6.1 Conceptual Overview

PFEL combines three core technological pillars [74]:
e Federated Learning (FL) for decentralized model training without sharing raw industrial or personal data.
e Edge Computing for real-time processing, inference, and filtering at the point of data generation.
e Distributed Ledger Technology (DLT) to maintain an immutable and verifiable record of model updates, trust
scores, transactions, and security audits.
This tri-layered approach ensures that Industry 5.0 systems benefit from intelligence and automation without
sacrificing privacy, trust, or performance. PFEL creates a secure bridge among robots, machines, wearables, digital
twins, and enterprise platforms.

6.2 Architectural Components

PFEL is structured around several interconnected components, each playing a specific role in secure industrial
collaboration [75].

6.2.1 Edge Nodes

Sensors, controllers, cobots, and IIoT gateways are examples of edge nodes that collect raw data locally and
carry out feature extraction, preprocessing, and on-device inference. Only processed model updates, not private raw
data, are allowed to leave the manufacturing floor thanks to these nodes. To safeguard edge operations, secure boot,
hardware-based encryption, and trusted execution environments are included [76].

6.2.2 Federated Learning Coordinator

Coordinating training across several nodes is the responsibility of the FL coordinator. It uses cryptographic
methods like homomorphic encryption and secure aggregation to safely aggregate model updates. By default,
privacy is guaranteed because the coordinator does not have access to underlying personal or business data [77].

6.2.3 Distributed Ledger Layer
A lightweight blockchain forms the backbone of trust [78]. This ledger records the following:
Model update hashes
Node reputation scores
Verification proofs
Device and user authentication logs
Policy enforcement records
The ledger helps detect malicious contributors, prevents tampering, and creates accountability across multi-
party ecosystems.

6.2.4 Smart Contracts
Smart contracts automate validation of FL contributions, manage trust scoring, enforce security policies, and
trigger anomaly alerts. They also handle access permissions, supply chain verification, and automated compliance
checks [79].
6.2.5 Privacy-Preserving Engine
This engine incorporates techniques such as [80]:
o Differential privacy
e Secure multiparty computation
e Homomorphic encryption
¢ Random noise injection
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e Local data obfuscation
These measures ensure that sensitive industrial and human-centric data cannot be reverse-engineered.

6.3 Functional Workflow
PFEL operates in sequential steps to ensure secure collaboration.

6.3.1 Local Data Processing
Workers, machines, and robots generate continuous real-time data. Edge nodes extract essential features and
discard redundant or sensitive elements before training starts [81].

6.3.2 Federated Training Cycle
Each node trains a local model on its own dataset. Only encrypted gradients or model updates are shared, not
the original data [82].

6.3.3 Secure Aggregation and Verification

The coordinator aggregates updates using secure computation [83]. The ledger validates:
e Model update integrity
e Node identity
e Contribution legitimacy

Malicious or deviating nodes are flagged automatically.

6.3.4 Ledger Recording and Consensus
Hash values of updates and trust scores are stored on the ledger. Consensus ensures immutability and
transparency across stakeholders [84].

6.3.5 Model Deployment and Real-Time Adaptation

The updated global model is pushed back to edge devices for real-time decision-making. Continuous cycles
help the system adapt to new workloads, human behaviors, and machine conditions [85].

Table 3: PFEL Across Various Parameters

Parameter Description

Combines federated learning, edge computing, and
blockchain into a unified privacy-preserving framework.
Architecture Model [86] Edge nodes perform local training, blockchain records
model updates, and a federated aggregator coordinates
global learning.

Provides secure and privacy-aware collaborative learning
for Industry 5.0 ecosystems without sharing raw data.
Ensures trustworthy model updates and protects sensitive
industrial information.

Raw data stays at the edge. Only encrypted gradients or
Data Handling [88] differentially private updates are shared. Eliminates
centralized data storage risks.

Uses  differential  privacy, secure  aggregation,
homomorphic encryption (optional), and blockchain-
based audit trails to prevent leakage of sensitive insights
from model updates.

Ensures integrity through consensus, protects against
poisoning attacks, enforces trust via immutable logs, and
verifies node behavior using reputation-aware update
validation.

Lightweight consensus (e.g., PBFT or PoA) suited for edge
Consensus Mechanism [91] networks. Ensures fast validation with low computational
overhead.

Peer-to-peer edge communication with periodic
Communication Model [92] synchronization to a blockchain ledger. Reduces latency
and avoids costly cloud transmissions.

Most computation happens at edge devices for local model
training. Aggregation is distributed, and blockchain nodes

Primary Objective [87]

Privacy Mechanisms [89]

Security Features [90]

Computation Distribution [93]
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maintain ledger consistency.

Scalability [94] systems, and smart industrial environments. Supports

Designed to scale across heterogeneous IoT, cyber-physical

dynamic node participation and fault tolerance.

Latency Considerations [95] Blockchain overhead is minimized using lightweight

Local processing at the edge reduces round-trip delays.

consensus and off-chain caching.

Energy Efficiency [96] offloading heavy tasks to edge servers and using optimized

Reduces energy load on resource-constrained nodes by

training cycles.

Attack Resistance [97] inversion, Sybil attacks, and data inference attacks through

Protects against model poisoning, free-riding, model

validation rules and privacy guards.

Auditability [98] ledger, offering full transparency and verifiable

Every model update and trust score is recorded on the

accountability.

Interoperability [99] servers, and legacy industrial systems. Modular design

Works with heterogeneous IoT sensors, robots, edge

supports plug-and-play adoption.

Trust Management [100] Suspicious or malicious behavior automatically lowers

Blockchain ledger maintains trust scores for nodes.

participation priority.

Fault Tolerance [36] model remains stable through federated round completion

Supports node failures or intermittent connectivity. Global

and redundancy.

Deployment Scenarios [42] healthcare IoT, predictive maintenance, collaborative

Smart factories, robotics, intelligent supply chains,

robots, and industrial automation.

Performance Metrics [19] communication overhead, privacy budget, and detection

Uses model accuracy, training latency, ledger throughput,

rate of malicious updates.

Strengths [98] transparency, resilience to attacks, reduced latency,

Strong privacy guarantees, decentralized trust, high

regulatory compliance support.

Limitations [16] add blockchain storage overhead, and performance

Requires optimized consensus to avoid bottlenecks, may

depends on device heterogeneity.

Future Enhancements [21] scoring, dynamic consensus selection, and Al-driven

Integration with zero-knowledge proofs, adaptive trust

anomaly prediction for model updates.

7. SECURITY AND PRIVACY MECHANISM IN DETAIL

7.1 Differential Privacy at the Edge

PFEL uses adaptive epsilon budgeting in conjunction with local differential privacy (LDP). PFEL links the
privacy budget to the job sensitivity and contributor trust rather than a set epsilon. For improved usability and
stronger auditability, high-trust devices can be permitted a somewhat lower noise contribution. To avoid privilege
escalation, this calls for strict governance [92].

Mechanism:

Clip gradients to a global bound C.

Add calibrated noise sampled from a Gaussian mechanism with adaptive scale o dependent on epsilon
budget.

Generate a succinct ZKP that the clipping and noise process used the agreed parameters.
Benefits:

Limits membership inferences and sensitive attribute leakage.
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e Keeps raw data local.
e Risks and mitigations:

e Excessive noise reduces model performance. Mitigation: adjust number of communication rounds
and use trust-weighted aggregation to preserve signal.

7.2 Secure Aggregation and TEEs

PFEL aggregation is safeguarded by either employing SMPC across several aggregator nodes or by executing
the aggregation function inside a TEE with remote attestation. Although TEEs offer robust confidentiality
protection during aggregation, attestation is necessary to confirm that the right code is executed [27].

Protocol:

e Aggregator provides attestation quote to contributors; contributors validate the quote before sending
encrypted updates.

e Updates are decrypted only inside the TEE. Aggregation is performed, signed, and the result exported
with a proof of correct execution.

o If TEEs are unavailable or suspected of compromise, PFEL falls back to SMPC-based aggregation
among mutually mistrustful aggregators.

e Trade-offs:
e TEE: lower latency, single point of hardware dependency.
e SMPC: higher communication cost, robust to single hardware compromise.
7.3 Ledger Commitments and Privacy
Storing raw artifacts on ledgers is avoided. PFEL stores [31]:
e Hashes of model versions.
e Signed attestations from TEEs or SMPC participants.
e Encoded DP parameters for each round.
e Encrypted pointers to off-chain logs if necessary.

This approach provides tamper-evident auditability while minimizing exposure.

7.4 Adaptive Trust and Anomaly Detection
Trust scores combine [56]:
e Device provenance and firmware attestation.
e Historical gradient similarity and contribution patterns.

e Cross-validation: a participant’s update is checked for consistency with peers via similarity measures
and holdout validation.

e [External certifications or sanctions.

Trust updates are recorded as commitments in the ledger. Attack patterns such as on-off behavior or collusion
are mitigated by trust damping and outlier detection.

7.5 Explainability and Human Oversight

A human-readable summary that includes a high-level explanation, confidence, implicated data domains, and
a rollback option is produced by every model update that affects safety-critical decisions. When model updates
substantially depart from predetermined baselines, the system offers triggers for human intervention [66].
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Table 4: Security and Privacy Mechanisms

Parameter Differential Secure Multi-Party | Homomorphic Trusted Blockchain-Based
Privacy (DP) Computation (SMPC) | Encryption (HE) Execution Security
Environments
(TEE)
Blockchain-Based Protect data by | Enable . ) joint | Allow computation | Provide isolated | Ensure .iptegrity .and
e ad(.hng gontrolled compll}tatl.on without | on encrypted data secure hardware | traceability of actions
noise to updates revealing inputs zones
iz Trpposns Ficlk qu, but depends on | Very low; raw data never | Almost zero; data Low, data protected | Low; a!l transactions
[73] privacy budget shared always encrypted 1n511de hardware | are verifiable
enclave
. Low Medium to high | High; encryption | Low to medium Medium depending
832%2;?[?7 I;Sl depe;nding on number of operatipns are on consensus
parties expensive
Communication Low High due to interactive | Medium Low Medium
Overhead [57] protocols
High; suitable for | Moderate; complexity | Low to moderate | High for edge | High with
Scalability [55] large FL deployments | grows with participants depending on | devices that support | lightweight
encryption scheme TEE consensus
Accuracy  Impact | Slight drop due to | No accuracy loss No accuracy loss No accuracy loss No direct impact
[11] noise
Protection Against | Good, but dependson | Strong Strong Strong through
Inference  Attacks | noise calibration Strong tamper-proof logs
[19]
Protection Against | Limited; noise | Good; joint validation | Good if combined | Good; enclaves | Strong; ledger
Poisoning  Attacks | doesn’t stop | helps identify malicious | with integrity checks | protect model | enables  detection
[71 malicious updates parties integrity and rollback
el Softwarg—only; easy | All parties must run Speciali;ed ) . Hardware support Blockchain
Requirements|fi1] integration SMPC protocols encryption libraries (Intel SGX, ARM | infrastructure and
TrustZone) validators
Energy Very low Moderate High Low to moderate Moderate
Consumption [18]
Negligible Higher due to interaction | Significant if heavy | Small overhead Moderate depending
Latency Impact [22] rounds encryption used on block generation
time
Large FL systems | Highly sensitive multi- | Environments Edge devices with | Systems needing
Best Used In [29] with many devices party collaboration requiring full | secure chipset | transparent trust and
encryption support tamper-proof
validation
Tiieet i fovme Gl Noise  must be | High  communication | High computation | Needs hardware | Storage overhead
carefully tuned cost cost compatibility and consensus delays

8. SECURITY AND PRIVACY MECHANISM IN DETAIL

A detailed deployment strategy for the suggested Privacy-Preserving Federated Edge Ledger (PFEL)
architecture in an Industry 5.0 environment is presented in this section. Additionally, it explains the metrics,
datasets, testing environments, and evaluation framework needed to verify the system's scalability, performance,
and resilience [11].

8.1 Implementation Roadmap

8.1.1 Phase 1: Requirements Analysis and System Specification

Finding operational needs, data flows, and privacy restrictions throughout the industrial environment is the
first step. Manufacturing, robotics, edge management, and IT security stakeholders all contribute to a single
standard. Mapping data sources like digital twins, cobots, smart sensors, and quality inspection systems is part of
this. At this point, compliance standards and threat modeling are finalized [23].

8.1.2 Phase 2: Prototype Design of PFEL Components

To show how federated learning clients, edge nodes, and the lightweight ledger interact, a modular prototype
of PFEL is created. The differential privacy layer, secure enclave interface, aggregator at the edge, and FL training
module are important elements. Model-update commitments and device-trust scores are maintained by the

blockchain module. Simulation is used to test component interoperability [68].

8.1.3 Phase 3: Deployment of Edge Nodes and Secure Enclaves

To implement model-integrity protection, edge devices are outfitted with Trusted Execution Environments like
Intel SGX or ARM TrustZone. The lightweight ledger, local inference services, and federated aggregator are hosted
on these nodes. To make sure the hardware can handle PFEL operations without interfering with industrial process
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timings, benchmarking is carried out [77].
8.1.4 Phase 4: Integration of Federated Learning Workflows

Cobots, machine controllers, and Internet of Things devices all use federated learning clients. The privacy
budget, training rounds, and communication frequency are set up. The adaptive trust engine assigns trust scores,
keeps an eye on device behavior, and penalizes malicious updates. Model correctness and privacy are balanced
through local DP tuning [22].

8.1.5 Phase 5: Ledger Integration and Consensus Optimization

A lightweight consensus method, such as Proof-of-Authority or Directed Acyclic Graph (DAG) structures, is
used to integrate the tamper-evident ledger across edge nodes. Anomaly evidence, trust metrics, and model-update
signatures are released. System engineers confirm that no bottlenecks are introduced by ledger operations [25].

8.1.6 Phase 6: Pilot Deployment in a Real or Simulated Industrial Floor

An environment that simulates Industry 5.0 operations is used for a controlled pilot run. This covers cyber-
physical interactions, real-time analytics, and hybrid human-robot teams. Conveyor modules, robotic arms, live
sensor streams, and inspection stations are used to evaluate the PFEL design. Operator feedback aids in improving
procedures and the user experience [41].

8.1.7 Phase 7: Full-Scale Deployment and Optimization

PFEL is implemented on production lines with full device registration, ledger synchronization, and federated
model cycles following pilot validation. Dashboards for continuous monitoring keep tabs on anomaly trends, latency,
and performance. Schedules for routine retraining are automated. Reducing communication rounds, enhancing DP
budgets, and fine-tuning trust-score thresholds are the main goals of optimization [44].

8.2 Evaluation Plan

8.2.1 Experimental Setup and Dataset Selection

A combination of available benchmark repositories and actual industrial datasets is used for testing. Vibration
signals, defect-detection photos, predictive maintenance logs, and cooperative robot trajectories are a few examples
of datasets. To replicate poisoning assaults and high sensor noise, synthetic datasets are created [38].

8.2.2 Performance Metrics for Evaluation
Evaluation metrics are grouped across four categories [43]:
e Security metrics: attack detection rate, poisoning-resilience score, adversarial robustness.
e Privacy metrics: differential privacy loss (epsilon), vulnerability to inference attacks.
¢ System performance metrics: latency, throughput, bandwidth usage, computation time at edge nodes.
e Model accuracy metrics: precision, recall, F1-score, convergence time, deviation under noise.
These metrics help quantify PFEL’s performance under typical and adversarial conditions.

8.2.3 Attack Scenarios and Stress Testing
The system is evaluated against different threat scenarios [58]:

e Data-poisoning attacks during FL training
Model-inversion and membership-inference attacks
Byzantine device behavior
Collusion among malicious edge nodes
Ledger tampering attempts

e Physical access attacks on exposed devices
Stress tests measure survivability under high communication loads, partial network failures, and simultaneous

multi-agent attacks.

8.2.4 Baseline Comparisons
PFEL is compared with existing state-of-the-art solutions [52]:
e Standard federated learning without privacy enhancement
e Blockchain-enabled FL architectures
o Edge-only trust management frameworks
e Centralized machine-learning pipelines
Comparisons determine whether PFEL improves accuracy, privacy protection, and system stability while
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keeping overhead manageable.

8.2.5 Real-Time Performance Evaluation

Robotic sorting, quality inspection, cooperative assembly jobs, and predictive maintenance are examples of
real-time operations where the architecture is observed. Resource usage, end-to-end latency, and edge node
response time are all noted. PFEL is prevented from interfering with vital industrial processes through real-time
review [14].

8.2.6 Usability and Human—Machine Interaction Assessment

Usability testing assesses how operators engage with PFEL dashboards since Industry 5.0 places a strong
emphasis on human-centered design. The apparent transparency of the system, the clarity of trust-score indications,
and the simplicity of interpreting alerts are some of the factors. The system is improved by operator feedback [47].

8.2.7 Scalability and Long-Term Sustainability

Increasing the number of devices, nodes, and ledger entries is a component of scalability tests. The
assessment determines if PFEL can reliably scale to thousands of devices. Long-term deployment feasibility in
industrial flooring is evaluated by measuring hardware longevity and energy usage [100].

9. CONCLUSION

Only until security and privacy are integrated into organizational policies, protocols, and designs will Industry 5.0's
promise of human-centered industrial ecosystems be fulfilled. One approach is provided by PFEL: an integrated stack
that enables auditable, tamper-evident commitments on a permissioned ledger, protects local data privacy via
adaptive differential privacy, and secures aggregation via TEEs or SMPC. PFEL offers a workable blend of privacy,
integrity, auditability, and responsiveness necessary for human-in-the-loop industrial situations, even though it does
not eliminate concerns.

Strong governance, meticulous parameter adjustment, and technological innovation are necessary for PFEL
implementation. It will be crucial to keep researching strong federated learning, verifiable explainability, lightweight
cryptography, and socio-technical design. To guarantee that future industrial systems are secure, private, and
consistent with human values, industry, academia, regulators, and worker representatives should cooperate.
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