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A human-centered, resilient, and sustainable industrial ecosystem where people and intelligent 
systems work closely together is what Industry 5.0 offers. As industrial systems become more 
dispersed, data-rich, and interactive, security and privacy threats increase even as efficiency and 
customization gains are unlocked. The Privacy-Preserving Federated Edge Ledger (PFEL), an 
integrated, novel framework that combines federated learning, lightweight distributed ledgers, trusted 
execution environments, adaptive trust scoring, and fine-grained differential privacy to protect data 
and decision integrity without compromising human-in-the-loop responsiveness, is presented in this 
paper along with a focused analysis of the fundamental security and privacy challenges in Industry 5.0 
and a survey of pertinent technical building blocks. We offer an Industry 5.0-specific threat model, 
describe the architecture of PFEL, outline safe model aggregation and auditability procedures, 
examine security and performance trade-offs, and suggest an assessment roadmap with quantifiable 
metrics. Lastly, we highlight future directions that harmonize security and privacy design with human-
centric industrial ideals and examine wider socio-technical and legal ramifications. 
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1. INTRODUCTION 

 

The automation-driven perspective of earlier industrial revolutions has given way to a more human-centered 

and cooperative approach with Industry 5.0 [1]. The new paradigm integrates people, intelligent machines, and 

linked systems to build adaptable, sustainable, and customized industrial settings rather than concentrating just on 

efficiency and cost reduction. Because of this change, factories and supply chains now have a larger digital footprint, 

and security and privacy are now crucial to the development, implementation, and management of these systems 

[2]. 

Real value in Industry 5.0 is derived from ongoing human, machine, and data interaction. Large amounts of 

highly contextual data are produced by sensors, robots, wearables, smart tools, and edge devices. A large portion of 

this data is directly related to employees, production settings, and client demands [3]. Such data creates additional 

dangers when it travels between networks, cloud services, and collaborative platforms. Attackers may attack 

operational systems, take advantage of personal information, alter models that direct autonomous decision-making, 

or interfere with human-machine cooperation. The environment as a whole can be impacted by a single breach in 

terms of productivity, safety, and trust [4]. 

In this new environment, traditional security models—which mostly rely on perimeter defense and centralized 

monitoring—struggle. Industrial systems are no longer limited by borders. They rely on multi-vendor 

interconnections, remote maintenance, distributed intelligence, and quick reconfiguration. Due to these changes, 

security systems must be able to function near the edge, adjust to changing circumstances, and safeguard data 

without impeding vital activities [5]. 
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Expectations for privacy have also increased. Customers and employees seek assurances that personal data is 

gathered ethically and utilized exclusively for authorized reasons. Industrial data handling must adhere to 

regulations that demand accountability, minimization, and transparency. This creates an additional layer of 

difficulty since, if improperly safeguarded, the same data utilized to enhance quality or safety may potentially reveal 

sensitive organizational or personal information [6]. 

Artificial intelligence, human interaction, and cyber-physical systems combine to produce situations where 

security and privacy lapses can directly affect people. A robot operating alongside a human could be misled by a 

modified model. Confidential production techniques or worker health indicators could be revealed by a leaked 

dataset. Long-term infiltration may start with a vulnerable supply-chain component [7]. 

These issues highlight the need for fresh approaches that strike a balance between operational resilience, data 

security, and real-time performance. In this field, strategies including distributed ledgers, lightweight cryptography, 

federated learning, privacy-preserving analytics, trusted hardware, and adaptive trust management are becoming 

indispensable technologies [8]. In order for employees to maintain control, comprehend system behavior, and have 

faith in automated judgments, these technologies must be implemented in accordance with human-centered design 

principles [9]. 

In addition to outlining technical solutions that promote secure, open, and resilient industrial ecosystems, this 

article examines the new security and privacy issues raised by Industry 5.0. It explains why traditional methods are 

no longer sufficient and offers integrated concepts that support Industry 5.0's three main tenets: human 

empowerment, sustainability, and collaboration [10]. 

 

     1.1 Motivation of the Research 

The increasing necessity to safeguard the next generation of human-centered industrial systems is the driving 

force behind this research. The hazards associated with data exploitation, system manipulation, and privacy 

violations rise rapidly as Industry 5.0 brings humans and intelligent computers closer than before. Modern 

industrial settings rely on edge intelligence, real-time analytics, and customized workflows, which create intricate 

security requirements that are beyond the capabilities of conventional models [11]. Attacks on these systems have 

the potential to jeopardize worker safety, interfere with production, and erode supply chain trust. Industries must 

adhere to stringent privacy laws while still utilizing data to boost productivity and assist human decision-making. 

As a result, there is a disconnect between current security measures and operational requirements [12]. New ideas, 

innovative designs, and methods that can protect data without impeding industrial operations are needed to close 

this gap. By examining new issues and suggesting solutions specific to Industry 5.0, the research seeks to address 

this requirement [13]. 

   1.2 Key contributions and roadmap of the article 

The key contributions of the article are as follows: 

• The study provides a structured analysis of the unique security and privacy challenges that arise from human-

machine collaboration and distributed intelligence in Industry 5.0 environments. 

• It introduces a new integrated architecture that combines federated learning, edge intelligence, trusted 

hardware, and privacy-preserving techniques tailored for industrial workflows. 

• The work proposes an adaptive trust management model that detects malicious behavior, improves model 

integrity, and supports secure collaboration across heterogeneous devices. 

• It outlines a tamper-evident audit mechanism using lightweight ledger commitments to ensure accountability 

without exposing sensitive industrial data. 

• The paper offers a comprehensive roadmap and evaluation plan that can guide real-world deployment and 

further research on secure and privacy-aware Industry 5.0 systems. 
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2.  RELATED WORK 

 

As manufacturing systems move toward increased autonomy, data exchange, and human-machine 

collaboration, research on security and privacy in modern industrial contexts has changed quickly. Securing 

Industrial Internet of Things (IIoT) architectures under Industry 4.0 was a major focus of early research [14]. This 

research mostly focused on secure data storage, intrusion detection, device authentication, and communication 

protection. Although these contributions established solid groundwork, they frequently relied on centralized data 

pipelines, machine-centric automation, and minimal human participation in decision loops [15]. Many current 

methods are unable to manage the volume, sensitivity, and contextual complexity of data generated in collaborative 

industrial settings, and Industry 5.0 brings new dynamics. 

Secure IIoT communication is one of the most important areas of related research. To protect devices with 

limited resources, researchers have suggested identity frameworks, key-management strategies, and lightweight 

encryption [16]. These frameworks do not entirely account for ongoing data flows between humans, robots, and 

adaptive edge systems, but they do guarantee fundamental confidentiality and authenticity. Similar to this, research 

on secure cyber-physical systems (CPS) has looked at attack responses and control-loop vulnerabilities, providing 

models for robust operation and anomaly detection. These methods are useful, but the majority do not take into 

account the privacy implications of gathering specific employee or customer data and instead presume predictable 

computer behavior [17]. 

Machine learning and analytics that protect privacy constitute a second significant field of related development. 

Because it enables businesses to train models without aggregating raw data, federated learning (FL) has garnered a 

lot of attention [18]. Its advantages for anomaly detection, predictive maintenance, and industrial monitoring have 

been investigated. Nevertheless, FL is susceptible to inference attacks, gradient leaking, poisoning, and backdoors. 

Through secure aggregation, differential privacy, anomaly scoring, and cryptographic safeguards, researchers have 

tried to reduce these dangers. While these techniques improve anonymity, they frequently result in computational 

cost or delays that are challenging to handle in industrial settings when time is of the essence [19]. 

Another pertinent area of study is Trusted Execution Environments (TEEs). TEEs are appealing for safe data 

processing and aggregation because they offer hardware-backed defense against operating-system level threats. 

TEEs can separate sensitive tasks and stop tampering in cloud or edge servers, according to numerous studies [20]. 

However, they have disadvantages such as hardware dependence, side-channel vulnerability, and limited memory. 

Because it is not feasible to use TEEs alone in large industrial networks, research has focused on hybrid techniques 

that combine TEEs with permissioned ledgers or secure multiparty computation [21]. 

Recent research on industrial security has also heavily relied on blockchain and distributed ledgers. 

Blockchain-based firmware upgrades, data-sharing methods, audit trails, and access restrictions have all been 

suggested by researchers [22]. These systems are prized for their decentralized trust and immutability. However, 

consensus techniques might result in latency issues in real-time processes, and putting industrial data directly on-

chain presents privacy concerns. Although there are yet few industrial implementations, some research proposes 

combining off-chain storage with on-chain verification to balance performance and accountability [23]. 

Another crucial issue in distributed industrial systems is trust management. The detection of rogue nodes, 

faulty devices, or anomalous behavior in sensor networks is the main emphasis of current reputation and trust 

models [24]. These models perform rather well in closed contexts, but they frequently are not flexible enough for a 

variety of industry situations that include dynamic worker interactions, changing device quality, and frequent 

reconfiguration. In order to enhance human-centric processes, machine learning-based scoring, cross-validation, 

and behavioral profiling need to be further refined, according to recent studies [25]. 

New security and privacy issues are brought forth by human-robot collaboration (HRC). This area of study 

looks at ways to guarantee secure interactions and stop negative behavior brought on by malicious data or system 

errors [26]. Research identifies attack vectors such as sensor input manipulation, decision model interference, and 

robot miscalibration. Nonetheless, a lot of works prioritize physical safety while paying little regard to data privacy. 

Protecting these sensitive data streams becomes crucial as robots depend more and more on worker posture, 

gesture, and biometric cues [27]. 

Studies on ethics and regulations also support related research. Researchers examine how industrial data 

governance and system design are impacted by privacy legislation, such as data protection laws [28]. They contend 

that technological safeguards must be in line with cultural norms and human rights, emphasizing responsibility, 

openness, and data reduction. These viewpoints are essential for Industry 5.0, which places equal emphasis on 

productivity and efficiency as well as human dignity and well-being [29]. 
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The move toward edge computing and distributed intelligence is highlighted by current research developments. 

By processing data closer to its source, edge-centric designs lower latency and enhance privacy. Research suggests 

secure edge frameworks that make use of secure updating techniques, adaptive access control, local encryption, and 

container isolation. While these methods increase responsiveness, they challenge standard security solutions by 

introducing heterogeneity and resource limitations [30]. 

All things considered, the corpus of linked work offers solid foundations in distributed ledgers, trusted 

hardware, secure IIoT, privacy-preserving analytics, and human-machine safety. However, when it comes to 

combining these components into a coherent strategy that satisfies the particular requirements of Industry 5.0, 

there is still a discernible gap [31]. A complicated environment where data sensitivity, operational timing, trust, and 

system responsibility are linked is created by the tight contact between humans and intelligent machines. Rarely do 

current models handle these junctions from beginning to end. Instead of integrating security and privacy with 

system performance, human oversight, and ethical design principles, many researchers consider them as distinct 

issues [32]. 

By suggesting an integrated approach that combines federated learning, edge intelligence, differential privacy, 

trusted execution, and ledger-based auditability within a human-centered industrial framework, this study expands 

upon these previous contributions. In settings where humans and intelligent machines must collaborate seamlessly, 

the objective is not only to safeguard data and systems but also to guarantee transparency, resilience, and reliability 

[33]. 

 

3.  INDUSTRY 5.0: CHARACTERISTICS THAT IMPACT SECURITY AND PRIVACY 
 

Industry 5.0 represents a change from automation-focused manufacturing to a cooperative framework in which 
intelligent systems and people collaborate. Advanced sensing, learning, networking, and decision-support 
technologies are driving this shift; while they present new opportunities, they also pose difficult security and privacy 
issues [34]. Understanding the relationship between digital trust and next-generation industrial ecosystems is 
essential because the distinctive features of this period influence how data is created, exchanged, processed, and 
safeguarded [35]. 

 
Table 1: Industry 4.0 vs Industry 5.0 in Terms of Security and Privacy Parameters 

 

Parameter 
 

Industry 4.0 Industry 5.0 Security and Privacy 
Impact 

Human–Machine 
Interaction [36] 

Focus on automation; 
limited human 
collaboration 

Human–robot 
collaboration and 
human-centric 
operations 

More exposure of 
biometric, behavioral, and 
contextual data 

Connectivity Level 
[37] 

Machine-to-machine, 
IoT-centric networks 

Hyper-connected 
systems with 
humans, robots, edge 
devices, and cloud 

Larger attack surface, 
complex multi-layered 
protection required 

Data Generation [38] Structured machine 
data 

Mix of machine, 
human, sensor, 
wearable, and 
contextual data 

Higher risk of personal 
data leakage and profiling 

Real-Time 
Processing [39] 

Mostly cloud-based 
analytics 

Real-time edge 
intelligence and 
distributed decision-
making 

Vulnerability to edge 
attacks, data tampering, 
and model poisoning 

AI Integration [40] Centralized machine 
learning 

Distributed and 
collaborative AI 
including federated 
learning 

Need for secure model 
aggregation and 
protection from malicious 
updates 

System Architecture 
[41] 

Hierarchical cyber-
physical systems 

Decentralized, 
adaptive, and 
modular systems 

More entry points for 
attackers and complex 
trust management 

Sustainability Focus 
[42] 

Efficiency-driven Strong emphasis on 
ethical, sustainable, 
and responsible 
operations 

Requires transparent data 
handling and privacy-
aware analytics 
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Digital Twins [43] Used for machine 
monitoring 

Integrated with 
human digital twins 
and workforce 
analytics 

Threats to worker identity, 
behavioral patterns, and 
safety data 

Supply Chain 
Collaboration [44] 

Linear and partially 
integrated networks 

Highly collaborative 
multi-stakeholder 
ecosystems 

Cross-enterprise 
vulnerabilities and 
inconsistent security 
policies 

Communication 
Technologies [45] 

IoT, Ethernet, Wi-Fi, 
and partial 5G Widespread 5G/6G, 

TSN, URLLC, and 
industrial-grade 
wireless 

 

High-speed attacks 
possible; requires 
advanced encryption and 
access control 

Decision Support 
[46] 

Automation-led 
decision-making 

Human-enhanced 
and context-aware 
decision systems 

Sensitive worker feedback 
data must be protected 

Data Ownership [47] Mostly enterprise-
controlled 

Shared ownership 
among humans, 
machines, and 
external partners 

Need for clear governance, 
consent, and data 
minimization 

System Resilience 
[48] 

Focus on fault 
tolerance 

Resilient, 
collaborative, and 
ethical systems 

Greater reliance on 
secure-by-design practices 
and threat monitoring 

 
 

 
4.  EXISTING TECHNICAL BUILDING BLOCKS 

 

Several technologies that enable intelligent, networked, and human-centered industrial settings are essential 

to Industry 5.0. The technical basis for safe and privacy-conscious operations is formed by these basic blocks. 

Knowing them makes it easier to determine where present strengths exist and where more innovation is required 

[49]. 

 

Fig. 1: Existing Technical Building Blocks Diagram 

 

4.1   Industrial Internet of Things (IIoT) Platforms 

Real-time communication between machines, sensors, controllers, and robotics is made possible via IIoT 

systems. They offer edge filtering, data collection, protocol translation, and device administration. These systems 

facilitate interoperability between various industrial networks, including industrial Ethernet, Modbus, and OPC-

UA [50]. IIoT increases vulnerability to firmware assaults, protocol-level exploits, and illegal access, even while it 

also improves visibility and operational efficiency. For secure deployment, enhancing authentication and ongoing 

monitoring are still crucial [51]. 

4.2   5G and Next-Generation Industrial Networks 

Industry 5.0 relies heavily on high-bandwidth, low-latency networks like 5G, 6G-in-development, TSN, and 

URLLC. These technologies facilitate energy-efficient connectivity across factories, real-time analytics, and remote 

robot control [52]. Traffic prioritization and isolation are enhanced by features like network slicing and private 5G 

networks. These networks still have issues like spoofing, jamming, and incorrectly set slices, even if they provide 

quicker and safer communication. Secure network orchestration and effective key management are essential [53]. 
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4.3 Edge Computing and Fog Architectures 

By processing data as close to machines and robots as possible, edge computing minimizes latency. As 

intermediary layers, fog nodes facilitate model inference, real-time control, and pre-processing. This architecture 

shields sensitive data from needless transfer while lessening the strain on centralized cloud infrastructure. However, 

edge devices are susceptible to manipulation, malware injection, and denial-of-service assaults due to their limited 

processing power and physical exposure. These days, secure boot procedures and lightweight encryption are 

popular defenses [54]. 

4.4 Artificial Intelligence and Machine Learning Pipelines 

Predictive maintenance, fault detection, worker assistance systems, and production optimization all heavily 

rely on AI. Data collection, feature extraction, model training, and deployment on edge or cloud infrastructure are 

all included in machine learning pipelines. Although these systems increase robustness and accuracy, they also 

come with hazards like biased model outputs, poisoned datasets, and hostile manipulation. Model integrity is 

safeguarded via hostile awareness strategies and secure machine learning frameworks [55]. 

4.5 Federated Learning and Collaborative Model Training 

Distributed devices can train models without exchanging raw data thanks to federated learning. Supply chain 

optimization, quality prediction, and worker behavior analysis can all benefit from this approach. Although it lowers 

privacy risks, it creates additional avenues for attack, including compromised aggregator nodes, inference attacks, 

and model poisoning. Differential privacy, safe aggregation, and trust-weighted updates are used in current 

methods, but they still require improvement to withstand coordinated attacks [56]. 

4.6 Blockchain and Distributed Ledger Technologies 

Blockchain offers tamper-proof transaction records, decentralized trust, and unchangeable logs. It facilitates 

safe data sharing, model authentication, supply chain traceability, and access control in Industry 5.0. Smart 

contracts lessen dependency on centralized authorities by automating verification procedures. However, significant 

latency and resource consumption are problems with conventional blockchain systems. To better suit industrial 

settings, lightweight blockchain frameworks and hybrid chain methods are also being investigated [57]. 

4.7 Digital Twins for Real-Time Monitoring and Simulation 

Digital twins replicate how workers, production lines, and robots behave. They facilitate scenario testing, 

remote control, and predictive analytics. Digital twins rely on constant data inputs from sensors and robots for real-

time synchronization. The twin becomes erroneous if this data is tampered with or intercepted. Trusted digital twin 

environments are maintained with the use of secure data pipelines, integrity checks, and anomaly detection 

technologies [58]. 

4.8 Robotic Systems and Collaborative Cobots 

Flexible production relies heavily on autonomous mobile robots, robotic arms, and cooperative cobots. 

Contemporary cobots collaborate with people using sophisticated sensing, machine vision, and safety frameworks. 

Real-time decision-making is necessary for these systems to prevent collisions and help employees. Unsafe activities 

may result from security flaws in sensor feeds, wireless connections, or robot firmware. These days, hardened 

firmware, approved data inputs, and secure robot operating systems are standard security procedures [59]. 

4.9 Cloud Computing and Industrial Data Lakes 

Cloud platforms facilitate enterprise-level optimization, digital twin management, historical data storage, and 

large-scale analytics. Sensor logs, production reports, employee analytics, and business systems are all integrated 

into industrial data lakes. Cloud solutions provide scalability, but they also increase reliance on external security 

measures. Common issues include cross-tenant risks, poor access control, and misconfigurations. Encrypted data 

pipelines and zero-trust policies aid in reducing these problems [60]. 

4.10 Cybersecurity Frameworks and Access Control Mechanisms 

Industrial activities are protected by a range of security frameworks, including encrypted communication 
protocols, identity and access management systems, and zero-trust architecture. Protection is strengthened by 
methods including token-based access, multi-factor authentication, and ongoing threat monitoring. Enforcing 
uniform policies in multi-vendor industrial settings is still challenging, even with these technologies. Complete 
security standardization is still hampered by compatibility and scalability issues [61]. 
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5.  THREAT MODEL 
 
 
The sorts of adversaries, their capabilities, attack surfaces, and potential weak areas in the system are all 

described in a threat model. The special characteristics of human-robot cooperation, highly interconnected 
industrial networks, dispersed learning pipelines, and the merging of operational and personal data must all be 
addressed by this model for Industry 5.0. The threat landscape, attacker characteristics, targeted assets, and 
possible attack pathways are described in the section that follows [62]. 

 
Table 2: Threat Model- Adversary Types, Capabilities, and Security Goals 

 
Adversary Type 

Capabilities 
 

Threatened Security 
Goals (CIA + Privacy 
+ Safety) 

External Attacker [63] Network scanning, exploiting open 
ports, brute-force attacks, malware 
injection, MITM attacks, DoS/DDoS 

Confidentiality, 
Integrity, Availability 

Insider (Malicious 
Employee [64] 

Authorized access to systems, misuse of 
credentials, data exfiltration, sabotage 
of machine settings 

Confidentiality, 
Integrity, Privacy, Safety 

Insider (Unintentional) [65] Weak password use, accidental data 
sharing, misconfiguring devices, and 
falling for phishing 

Integrity, Availability, 
Privacy 

Supply Chain Attacker [66] Tampering with firmware, introducing 
backdoors, and compromising third-
party software updates 

Integrity, 
Confidentiality, Safety 

Advanced Persistent Threat 
(APT) [67] 

Stealthy infiltration, long-term 
surveillance, privilege escalation, 
coordinated multi-vector attacks 

Confidentiality, 
Integrity, Availability, 
Privacy 

Rogue Edge Device / 
Compromised Node [68] 

Injecting false sensor data, altering ML 
model updates, disrupting edge 
analytics 

Integrity, Safety, 
Availability 

Adversarial AI Attacker [69] Creating adversarial inputs, poisoning 
federated learning models, reverse 
engineering model behavior 

Integrity, Privacy, Safety 

Physical Intruder [70] Tampering with IoT devices, accessing 
exposed ports, manipulating robot 
sensors 

Safety, Integrity, 
Availability 

Cybercriminal Group [71] Ransomware deployment, financial 
extortion, IP theft, data leakage to dark 
markets 

Confidentiality, 
Availability, Financial 
security 

Industrial Competitor [72] Espionage, stealing digital twin models, 
monitoring production patterns, 
profiling workforce behavior 

Confidentiality, Privacy, 
Integrity 

 
6.  PRIVACY-PRESERVING FEDERATED EDGE LEDGER 

 
 
A comprehensive security and privacy framework for Industry 5.0 contexts is called the Privacy-Preserving 

Federated Edge Ledger (PFEL). It creates a safe environment for distributed industrial intelligence and human-
machine cooperation by combining federated learning, edge computing, blockchain-based ledgers, and privacy-
enhancing technologies. By facilitating real-time analytics, decentralized trust, and secure data sharing among 
hundreds of networked industrial organizations, PFEL overcomes the drawbacks of conventional centralized 
systems [73]. 

 



26                                           Vinoth R /IJCNIS,18(1),19-36 

 

 
Copyright © 2026 by Author/s and Licensed by IJCNIS. This is an open access article distributed under the Creative Commons Attribution License which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 
Fig. 2: Privacy-Preserving Federated Edge System 

 
 
6.1   Conceptual Overview 
 
PFEL combines three core technological pillars [74]: 

• Federated Learning (FL) for decentralized model training without sharing raw industrial or personal data. 
• Edge Computing for real-time processing, inference, and filtering at the point of data generation. 
• Distributed Ledger Technology (DLT) to maintain an immutable and verifiable record of model updates, trust 

scores, transactions, and security audits. 
This tri-layered approach ensures that Industry 5.0 systems benefit from intelligence and automation without 

sacrificing privacy, trust, or performance. PFEL creates a secure bridge among robots, machines, wearables, digital 
twins, and enterprise platforms. 

 
6.2   Architectural Components 
 
PFEL is structured around several interconnected components, each playing a specific role in secure industrial 

collaboration [75]. 
6.2.1   Edge Nodes 
Sensors, controllers, cobots, and IIoT gateways are examples of edge nodes that collect raw data locally and 

carry out feature extraction, preprocessing, and on-device inference. Only processed model updates, not private raw 
data, are allowed to leave the manufacturing floor thanks to these nodes. To safeguard edge operations, secure boot, 
hardware-based encryption, and trusted execution environments are included [76]. 

 
6.2.2   Federated Learning Coordinator 
 
Coordinating training across several nodes is the responsibility of the FL coordinator. It uses cryptographic 

methods like homomorphic encryption and secure aggregation to safely aggregate model updates. By default, 
privacy is guaranteed because the coordinator does not have access to underlying personal or business data [77]. 

 
6.2.3   Distributed Ledger Layer 
A lightweight blockchain forms the backbone of trust [78]. This ledger records the following: 

• Model update hashes 
• Node reputation scores 
• Verification proofs 
• Device and user authentication logs 
• Policy enforcement records 

The ledger helps detect malicious contributors, prevents tampering, and creates accountability across multi-
party ecosystems. 

 
6.2.4   Smart Contracts 
Smart contracts automate validation of FL contributions, manage trust scoring, enforce security policies, and 

trigger anomaly alerts. They also handle access permissions, supply chain verification, and automated compliance 
checks [79]. 

6.2.5   Privacy-Preserving Engine 
This engine incorporates techniques such as [80]: 

• Differential privacy 
• Secure multiparty computation 
• Homomorphic encryption 
• Random noise injection 
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• Local data obfuscation 
These measures ensure that sensitive industrial and human-centric data cannot be reverse-engineered. 

 
6.3   Functional Workflow 
 
PFEL operates in sequential steps to ensure secure collaboration. 
 
6.3.1   Local Data Processing 
Workers, machines, and robots generate continuous real-time data. Edge nodes extract essential features and 

discard redundant or sensitive elements before training starts [81]. 
 
6.3.2   Federated Training Cycle 
Each node trains a local model on its own dataset. Only encrypted gradients or model updates are shared, not 

the original data [82]. 
 
6.3.3   Secure Aggregation and Verification 
The coordinator aggregates updates using secure computation [83]. The ledger validates: 

• Model update integrity 
• Node identity 
• Contribution legitimacy 

Malicious or deviating nodes are flagged automatically. 
 
6.3.4   Ledger Recording and Consensus 
Hash values of updates and trust scores are stored on the ledger. Consensus ensures immutability and 

transparency across stakeholders [84]. 
 
6.3.5   Model Deployment and Real-Time Adaptation 
The updated global model is pushed back to edge devices for real-time decision-making. Continuous cycles 

help the system adapt to new workloads, human behaviors, and machine conditions [85]. 
 
 

Table 3: PFEL Across Various Parameters 

 

Parameter Description 

Architecture Model [86] 

Combines federated learning, edge computing, and 
blockchain into a unified privacy-preserving framework. 
Edge nodes perform local training, blockchain records 
model updates, and a federated aggregator coordinates 
global learning. 

Primary Objective [87] 

Provides secure and privacy-aware collaborative learning 
for Industry 5.0 ecosystems without sharing raw data. 
Ensures trustworthy model updates and protects sensitive 
industrial information. 

Data Handling [88] 
Raw data stays at the edge. Only encrypted gradients or 
differentially private updates are shared. Eliminates 
centralized data storage risks. 

Privacy Mechanisms [89] 

Uses differential privacy, secure aggregation, 
homomorphic encryption (optional), and blockchain-
based audit trails to prevent leakage of sensitive insights 
from model updates. 

Security Features [90] 

Ensures integrity through consensus, protects against 
poisoning attacks, enforces trust via immutable logs, and 
verifies node behavior using reputation-aware update 
validation. 

Consensus Mechanism [91] 
Lightweight consensus (e.g., PBFT or PoA) suited for edge 
networks. Ensures fast validation with low computational 
overhead. 

Communication Model [92] 
Peer-to-peer edge communication with periodic 
synchronization to a blockchain ledger. Reduces latency 
and avoids costly cloud transmissions. 

Computation Distribution [93] 
Most computation happens at edge devices for local model 
training. Aggregation is distributed, and blockchain nodes 
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maintain ledger consistency. 

Scalability [94] 
Designed to scale across heterogeneous IoT, cyber-physical 
systems, and smart industrial environments. Supports 
dynamic node participation and fault tolerance. 

Latency Considerations [95] 
Local processing at the edge reduces round-trip delays. 
Blockchain overhead is minimized using lightweight 
consensus and off-chain caching. 

Energy Efficiency [96] 
Reduces energy load on resource-constrained nodes by 
offloading heavy tasks to edge servers and using optimized 
training cycles. 

Attack Resistance [97] 
Protects against model poisoning, free-riding, model 
inversion, Sybil attacks, and data inference attacks through 
validation rules and privacy guards. 

Auditability [98] 
Every model update and trust score is recorded on the 
ledger, offering full transparency and verifiable 
accountability. 

Interoperability [99] 
Works with heterogeneous IoT sensors, robots, edge 
servers, and legacy industrial systems. Modular design 
supports plug-and-play adoption. 

Trust Management [100] 
Blockchain ledger maintains trust scores for nodes. 
Suspicious or malicious behavior automatically lowers 
participation priority. 

Fault Tolerance [36] 
Supports node failures or intermittent connectivity. Global 
model remains stable through federated round completion 
and redundancy. 

Deployment Scenarios [42] 
Smart factories, robotics, intelligent supply chains, 
healthcare IoT, predictive maintenance, collaborative 
robots, and industrial automation. 

Performance Metrics [19] 
Uses model accuracy, training latency, ledger throughput, 
communication overhead, privacy budget, and detection 
rate of malicious updates. 

Strengths [98] 
Strong privacy guarantees, decentralized trust, high 
transparency, resilience to attacks, reduced latency, 
regulatory compliance support. 

Limitations [16] 
Requires optimized consensus to avoid bottlenecks, may 
add blockchain storage overhead, and performance 
depends on device heterogeneity. 

Future Enhancements [21] 
Integration with zero-knowledge proofs, adaptive trust 
scoring, dynamic consensus selection, and AI-driven 
anomaly prediction for model updates. 

 
 

 
7.  SECURITY AND PRIVACY MECHANISM IN DETAIL 

 

7.1   Differential Privacy at the Edge 

PFEL uses adaptive epsilon budgeting in conjunction with local differential privacy (LDP). PFEL links the 

privacy budget to the job sensitivity and contributor trust rather than a set epsilon. For improved usability and 

stronger auditability, high-trust devices can be permitted a somewhat lower noise contribution. To avoid privilege 

escalation, this calls for strict governance [92]. 

Mechanism: 

• Clip gradients to a global bound C. 

• Add calibrated noise sampled from a Gaussian mechanism with adaptive scale σ dependent on epsilon 

budget. 

• Generate a succinct ZKP that the clipping and noise process used the agreed parameters. 

• Benefits: 

• Limits membership inferences and sensitive attribute leakage. 
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• Keeps raw data local. 

• Risks and mitigations: 

• Excessive noise reduces model performance. Mitigation: adjust number of communication rounds 

and use trust-weighted aggregation to preserve signal. 

7.2   Secure Aggregation and TEEs 

PFEL aggregation is safeguarded by either employing SMPC across several aggregator nodes or by executing 

the aggregation function inside a TEE with remote attestation. Although TEEs offer robust confidentiality 

protection during aggregation, attestation is necessary to confirm that the right code is executed [27]. 

Protocol: 

• Aggregator provides attestation quote to contributors; contributors validate the quote before sending 

encrypted updates. 

• Updates are decrypted only inside the TEE. Aggregation is performed, signed, and the result exported 

with a proof of correct execution. 

• If TEEs are unavailable or suspected of compromise, PFEL falls back to SMPC-based aggregation 

among mutually mistrustful aggregators. 

• Trade-offs: 

• TEE: lower latency, single point of hardware dependency. 

• SMPC: higher communication cost, robust to single hardware compromise. 

7.3 Ledger Commitments and Privacy 

Storing raw artifacts on ledgers is avoided. PFEL stores [31]: 

• Hashes of model versions. 

• Signed attestations from TEEs or SMPC participants. 

• Encoded DP parameters for each round. 

• Encrypted pointers to off-chain logs if necessary. 

This approach provides tamper-evident auditability while minimizing exposure. 

 

7.4 Adaptive Trust and Anomaly Detection 

Trust scores combine [56]: 

• Device provenance and firmware attestation. 

• Historical gradient similarity and contribution patterns. 

• Cross-validation: a participant’s update is checked for consistency with peers via similarity measures 

and holdout validation. 

• External certifications or sanctions. 

Trust updates are recorded as commitments in the ledger. Attack patterns such as on-off behavior or collusion 

are mitigated by trust damping and outlier detection. 

 

7.5 Explainability and Human Oversight 

A human-readable summary that includes a high-level explanation, confidence, implicated data domains, and 

a rollback option is produced by every model update that affects safety-critical decisions. When model updates 

substantially depart from predetermined baselines, the system offers triggers for human intervention [66]. 
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Table 4: Security and Privacy Mechanisms 

 
Parameter 

 

Differential 
Privacy (DP) 

Secure Multi-Party 
Computation (SMPC) 

Homomorphic 
Encryption (HE) 

Trusted 
Execution 
Environments 
(TEE) 

Blockchain-Based 
Security 

Blockchain-Based 
Security [69] 

Protect data by 
adding controlled 
noise to updates 

Enable joint 
computation without 
revealing inputs 

Allow computation 
on encrypted data 

Provide isolated 
secure hardware 
zones 

Ensure integrity and 
traceability of actions 

Data Exposure Risk 
[73] 

Low, but depends on 
privacy budget 

Very low; raw data never 
shared 

Almost zero; data 
always encrypted 

Low; data protected 
inside hardware 
enclave 

Low; all transactions 
are verifiable 

Computational 
Overhead [78] 

Low Medium to high 
depending on number of 
parties 

High; encryption 
operations are 
expensive 

Low to medium Medium depending 
on consensus 

Communication 
Overhead [57] 

Low High due to interactive 
protocols 

Medium Low Medium 

Scalability [55] 
High; suitable for 
large FL deployments 

Moderate; complexity 
grows with participants 

Low to moderate 
depending on 
encryption scheme 

High for edge 
devices that support 
TEE 

High with 
lightweight 
consensus 

Accuracy Impact 
[11] 

Slight drop due to 
noise 

No accuracy loss No accuracy loss No accuracy loss No direct impact 

Protection Against 
Inference Attacks 
[19] 

Good, but depends on 
noise calibration 

Strong 
Strong 

 

Strong Strong through 
tamper-proof logs 

Protection Against 
Poisoning Attacks 
[7] 

Limited; noise 
doesn’t stop 
malicious updates 

Good; joint validation 
helps identify malicious 
parties 

Good if combined 
with integrity checks 

Good; enclaves 
protect model 
integrity 

Strong; ledger 
enables detection 
and rollback 

Deployment 
Requirements [11] 

Software-only; easy 
integration 

All parties must run 
SMPC protocols 

Specialized 
encryption libraries 

Hardware support 
(Intel SGX, ARM 
TrustZone) 

Blockchain 
infrastructure and 
validators 

Energy 
Consumption [18] 

Very low Moderate High Low to moderate Moderate 

Latency Impact [22] 
Negligible Higher due to interaction 

rounds 
Significant if heavy 
encryption used 

Small overhead Moderate depending 
on block generation 
time 

Best Used In [29] 

Large FL systems 
with many devices 

Highly sensitive multi-
party collaboration 

Environments 
requiring full 
encryption 

Edge devices with 
secure chipset 
support 

Systems needing 
transparent trust and 
tamper-proof 
validation 

Limitations [31] 
Noise must be 
carefully tuned 

High communication 
cost 

High computation 
cost 

Needs hardware 
compatibility 

Storage overhead 
and consensus delays 

 
 

8.  SECURITY AND PRIVACY MECHANISM IN DETAIL 
 

A detailed deployment strategy for the suggested Privacy-Preserving Federated Edge Ledger (PFEL) 

architecture in an Industry 5.0 environment is presented in this section. Additionally, it explains the metrics, 

datasets, testing environments, and evaluation framework needed to verify the system's scalability, performance, 

and resilience [11]. 

8.1   Implementation Roadmap 

8.1.1   Phase 1: Requirements Analysis and System Specification 

Finding operational needs, data flows, and privacy restrictions throughout the industrial environment is the 

first step. Manufacturing, robotics, edge management, and IT security stakeholders all contribute to a single 

standard. Mapping data sources like digital twins, cobots, smart sensors, and quality inspection systems is part of 

this. At this point, compliance standards and threat modeling are finalized [23]. 

8.1.2   Phase 2: Prototype Design of PFEL Components 

To show how federated learning clients, edge nodes, and the lightweight ledger interact, a modular prototype 

of PFEL is created. The differential privacy layer, secure enclave interface, aggregator at the edge, and FL training 

module are important elements. Model-update commitments and device-trust scores are maintained by the 

blockchain module. Simulation is used to test component interoperability [68]. 

8.1.3   Phase 3: Deployment of Edge Nodes and Secure Enclaves 

To implement model-integrity protection, edge devices are outfitted with Trusted Execution Environments like 

Intel SGX or ARM TrustZone. The lightweight ledger, local inference services, and federated aggregator are hosted 

on these nodes. To make sure the hardware can handle PFEL operations without interfering with industrial process 
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timings, benchmarking is carried out [77]. 

8.1.4   Phase 4: Integration of Federated Learning Workflows 

Cobots, machine controllers, and Internet of Things devices all use federated learning clients. The privacy 

budget, training rounds, and communication frequency are set up. The adaptive trust engine assigns trust scores, 

keeps an eye on device behavior, and penalizes malicious updates. Model correctness and privacy are balanced 

through local DP tuning [22]. 

8.1.5   Phase 5: Ledger Integration and Consensus Optimization 

A lightweight consensus method, such as Proof-of-Authority or Directed Acyclic Graph (DAG) structures, is 

used to integrate the tamper-evident ledger across edge nodes. Anomaly evidence, trust metrics, and model-update 

signatures are released. System engineers confirm that no bottlenecks are introduced by ledger operations [25]. 

8.1.6   Phase 6: Pilot Deployment in a Real or Simulated Industrial Floor 

An environment that simulates Industry 5.0 operations is used for a controlled pilot run. This covers cyber-

physical interactions, real-time analytics, and hybrid human-robot teams. Conveyor modules, robotic arms, live 

sensor streams, and inspection stations are used to evaluate the PFEL design. Operator feedback aids in improving 

procedures and the user experience [41]. 

8.1.7   Phase 7: Full-Scale Deployment and Optimization 

 

PFEL is implemented on production lines with full device registration, ledger synchronization, and federated 
model cycles following pilot validation. Dashboards for continuous monitoring keep tabs on anomaly trends, latency, 
and performance. Schedules for routine retraining are automated. Reducing communication rounds, enhancing DP 
budgets, and fine-tuning trust-score thresholds are the main goals of optimization [44]. 

 

8.2   Evaluation Plan 

 

8.2.1   Experimental Setup and Dataset Selection 

A combination of available benchmark repositories and actual industrial datasets is used for testing. Vibration 

signals, defect-detection photos, predictive maintenance logs, and cooperative robot trajectories are a few examples 

of datasets. To replicate poisoning assaults and high sensor noise, synthetic datasets are created [38]. 

8.2.2   Performance Metrics for Evaluation 

Evaluation metrics are grouped across four categories [43]: 

• Security metrics: attack detection rate, poisoning-resilience score, adversarial robustness. 

• Privacy metrics: differential privacy loss (epsilon), vulnerability to inference attacks. 

• System performance metrics: latency, throughput, bandwidth usage, computation time at edge nodes. 

• Model accuracy metrics: precision, recall, F1-score, convergence time, deviation under noise. 
These metrics help quantify PFEL’s performance under typical and adversarial conditions. 

 

8.2.3   Attack Scenarios and Stress Testing 

The system is evaluated against different threat scenarios [58]: 

• Data-poisoning attacks during FL training 

• Model-inversion and membership-inference attacks 

• Byzantine device behavior 

• Collusion among malicious edge nodes 

• Ledger tampering attempts 

• Physical access attacks on exposed devices 
Stress tests measure survivability under high communication loads, partial network failures, and simultaneous 

multi-agent attacks. 
 

8.2.4   Baseline Comparisons 

PFEL is compared with existing state-of-the-art solutions [52]: 

• Standard federated learning without privacy enhancement 

• Blockchain-enabled FL architectures 

• Edge-only trust management frameworks 

• Centralized machine-learning pipelines 
Comparisons determine whether PFEL improves accuracy, privacy protection, and system stability while 
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keeping overhead manageable. 
 

8.2.5   Real-Time Performance Evaluation 

Robotic sorting, quality inspection, cooperative assembly jobs, and predictive maintenance are examples of 

real-time operations where the architecture is observed. Resource usage, end-to-end latency, and edge node 

response time are all noted. PFEL is prevented from interfering with vital industrial processes through real-time 

review [14]. 

8.2.6   Usability and Human–Machine Interaction Assessment 

Usability testing assesses how operators engage with PFEL dashboards since Industry 5.0 places a strong 

emphasis on human-centered design. The apparent transparency of the system, the clarity of trust-score indications, 

and the simplicity of interpreting alerts are some of the factors. The system is improved by operator feedback [47]. 

8.2.7   Scalability and Long-Term Sustainability 

Increasing the number of devices, nodes, and ledger entries is a component of scalability tests. The 
assessment determines if PFEL can reliably scale to thousands of devices. Long-term deployment feasibility in 
industrial flooring is evaluated by measuring hardware longevity and energy usage [100]. 

 
 

9.  CONCLUSION 
 

Only until security and privacy are integrated into organizational policies, protocols, and designs will Industry 5.0's 

promise of human-centered industrial ecosystems be fulfilled. One approach is provided by PFEL: an integrated stack 

that enables auditable, tamper-evident commitments on a permissioned ledger, protects local data privacy via 

adaptive differential privacy, and secures aggregation via TEEs or SMPC. PFEL offers a workable blend of privacy, 

integrity, auditability, and responsiveness necessary for human-in-the-loop industrial situations, even though it does 

not eliminate concerns. 

Strong governance, meticulous parameter adjustment, and technological innovation are necessary for PFEL 

implementation. It will be crucial to keep researching strong federated learning, verifiable explainability, lightweight 

cryptography, and socio-technical design. To guarantee that future industrial systems are secure, private, and 

consistent with human values, industry, academia, regulators, and worker representatives should cooperate. 

 

. 
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